In concrete pavements, steel fibers are particularly suitable both for limiting shrinkage effects and for increasing the bearing capacity and fatigue resistance. In the present paper, the fracture behavior of steel-fiber-reinforced concrete slabs on grade is studied by using Non Linear Fracture Mechanics FE analyses, based on both smeared and discrete crack models. The fracture mechanics models have been validated by results from experiments on full scale slabs on elastic soil subjected to a load in the slab center. The comparison shows that NLFM analyses closely predict crack development, ultimate load and the collapse mechanism of slabs on grade. The smeared crack approach has been used for studying different loading conditions since it does not need an a-priori knowledge of the crack pattern.RésuméDans les pavement en béton, la présence de fibres d'acier est particulièrement avantageuse pour non seulement réduire le retrait, mais aussi la capacité portante. Dans le présent article, nous analysons le comportement d'un tablier de béton de fibres, posé à même le sol, à travers une approche basée sur la mécanique de rupture non linéaire dans laquelle des fissures réparties et discrètes sont utilisées. L'approche mécanique de la rupture a été valide pas de essais (en taille réelle) en laboratoire soumis à une charge ponctuelle au centre. L'analyse des résultats démontre que la mécanique de rupture non linéaire peut prédire la propagation des fissures, la charge limite, et le mécanisme d'effondrement. Les fissures réparties ont été utilisées pour analyser différents cas de charge puisque la direction de la fissuration ne doit pas être connue au préalable.
[1]
P. H. Feenstra,et al.
A composite plasticity model for concrete
,
1996
.
[2]
Knud Winstrup Johansen.
Yield-line theory
,
1962
.
[3]
Lucie Vandewalle,et al.
RILEM TC162-TDF : Test and Design Methods for Steel Fibre Reinforced Concrete : Bending Test, "Technical Recommendation"
,
2002
.
[4]
A. Hillerborg,et al.
Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements
,
1976
.
[5]
H M Westergaard,et al.
STRESSES IN CONCRETE PAVEMENTS COMPUTED BY THEORETICAL ANALYSIS
,
1926
.
[6]
Lucie Vandewalle,et al.
RILEM TC 162-TDF: Test and design methods for steel fibre reinforced concrete: bending test
,
2002
.
[7]
J. Rots.
Computational modeling of concrete fracture
,
1988
.
[8]
Victor C. Li.
From Micromechanics to Structural Engineering - The Design of Cementitious Composites for Civil Engi
,
1993
.
[9]
Robert A. Baumann,et al.
Yield‐Line Analysis of Slabs‐on‐Grade
,
1983
.
[10]
H Falkner,et al.
Comparative Study of Plain and Steel Fiber Reinforced Concrete Ground Slabs
,
1995
.
[11]
Lucie Vandewalle,et al.
RILEM TC 162-TDF: Test and design methods for steel fibre reinforced concrete' - sigma-epsilon-design method - Final Recommendation
,
2003
.
[12]
Sidney Mindess,et al.
Fibre Reinforced Cementitious Composites
,
1990
.
[13]
Gary L. Vondran.
Applications of Steel Fiber Reinforced Concrete
,
1991
.
[14]
Surendra P. Shah,et al.
Fiber-Reinforced Cement Composites
,
1992
.
[15]
Antoine E. Naaman,et al.
High performance fiber reinforced cement composites (HPFRCC4)
,
2003
.