A Thermodynamically Based Model for Actual Evapotranspiration of an Extensive Grass Field Close to FAO Reference, Suitable for Remote Sensing Application

AbstractA thermodynamically based model is presented to estimate daily actual evapotranspiration (ET) of a grass site closely resembling reference grass as defined by the Food and Agriculture Organization of the United Nations (FAO) under nonadvective conditions, from Meteosat Second Generation (MSG) imagery. The model presented here is derived from the thermodynamic theory by Schmidt combined with an atmospheric boundary layer model. Daily net radiation over the (reference) grass surface is parameterized as a function of global radiation, which can be estimated from MSG observations. It is then shown that ET over the grass area can be estimated using remotely sensed daily global radiation and air temperature as input only. The validation relied on observations gathered in Cabauw, a site closely resembling the reference grass, as defined by the FAO. The comparison with in situ data indicated a bias of 2.8 W m−2 and an RMSE of 7.7 W m−2. The possibility of using the approach developed here to provide refer...

[1]  Jean-Louis Roujean,et al.  Near real‐time provision of downwelling shortwave radiation estimates derived from satellite observations , 2008 .

[2]  Albert A. M. Holtslag,et al.  Estimation of Atmospheric Boundary Layer Parameters for Diffusion Applications , 1985 .

[3]  Axel Kleidon,et al.  Thermodynamic limits of hydrologic cycling within the Earth system: concepts, estimates and implications , 2013 .

[4]  H. D. Bruin,et al.  A Model for the Priestley-Taylor Parameter , 1983 .

[5]  Nader Katerji,et al.  Crop Reference Evapotranspiration: A Discussion of the Concept, Analysis of the Process and Validation , 2011 .

[6]  Albert A. M. Holtslag,et al.  Estimation of Surface Radiation and Energy Flux Densities from Single-Level Weather Data , 1999 .

[7]  K. McNaughton,et al.  A mixed-layer model for regional evaporation , 1986 .

[8]  P. Gavilán,et al.  Reference Evapotranspiration Estimation in a Highly Advective Semiarid Environment , 2005 .

[9]  R. Valentini EUROFLUX: An Integrated Network for Studying the Long-Term Responses of Biospheric Exchanges of Carbon, Water, and Energy of European Forests , 2003 .

[10]  E. Wood,et al.  Little change in global drought over the past 60 years , 2012, Nature.

[11]  M. P. González-Dugo,et al.  Reference crop evapotranspiration estimated from geostationary satellite imagery , 2012 .

[12]  Massimo Menenti,et al.  Comparison of MOD16 and LSA-SAF MSG evapotranspiration products over Europe for 2011 , 2015 .

[13]  M. Renner,et al.  Estimates of the climatological land surface energy and water balance derived from maximum convective power , 2014 .

[14]  Anton Beljaars,et al.  Cabauw Data for the Validation of Land Surface Parameterization Schemes , 1997 .

[15]  Albert A. M. Holtslag,et al.  A Simple Scheme for Daytime Estimates of the Surface Fluxes from Routine Weather Data , 1983 .

[16]  T. McMahon,et al.  Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis , 2013 .

[17]  Sandra C. Freitas,et al.  The Satellite Application Facility for Land Surface Analysis , 2011 .

[18]  Isabel F. Trigo,et al.  Incoming Solar and Infrared Radiation Derived from METEOSAT: Impact on the Modeled Land Water and Energy Budget over France , 2012 .

[19]  L. S. Pereira,et al.  A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method , 2006 .

[20]  Albert A. M. Holtslag,et al.  A Simple Parameterization of the Surface Fluxes of Sensible and Latent Heat During Daytime Compared with the Penman-Monteith Concept. , 1982 .

[21]  B. Choudhury,et al.  First order approach for estimating unstressed transpiration from meteorological satellite data , 1995 .

[22]  Michael R. Raupach,et al.  Combination theory and equilibrium evaporation , 2001 .

[23]  Keith R. Briffa,et al.  Summer Moisture Variability across Europe , 2006 .

[24]  B. G. Heusinkveld,et al.  An Extra Large Aperture Scintillometer For Long Range Applications , 2002 .

[25]  Isabel F. Trigo,et al.  Reference crop evapotranspiration derived from geo-stationary satellite imagery - a case study for the Fogera flood plain, NW-Ethiopia and the Jordan Valley, Jordan , 2010 .

[26]  R. Pielke Mesoscale Meteorological Modeling , 1984 .

[27]  C. Jacobs,et al.  The Sensitivity of Regional Transpiration to Land-Surface Characteristics: Significance of Feedback , 1992 .

[28]  R. A. Roebeling,et al.  Estimating surface solar irradiance from METEOSAT SEVIRI-derived cloud properties , 2008 .

[29]  J. Vilà‐Guerau de Arellano,et al.  Analytical Solution for the Convectively-Mixed Atmospheric Boundary Layer , 2013, Boundary-Layer Meteorology.

[30]  Lucien Wald,et al.  Using remotely sensed solar radiation data for reference evapotranspiration estimation at a daily time step , 2008 .

[31]  F. Guichard,et al.  Understanding the Daily Cycle of Evapotranspiration: A Method to Quantify the Influence of Forcings and Feedbacks , 2010 .

[32]  S. Ustin,et al.  Daily reference evapotranspiration for California using satellite imagery and weather station measurement interpolation , 2009 .

[33]  Bernhard Geiger,et al.  Satellite Application Facilities irradiance products: hourly time step comparison and validation over Europe , 2009 .

[34]  J. Stricker,et al.  Evaporation of grass under non-restricted soil moisture conditions , 2000 .

[35]  F. Anctil,et al.  Which potential evapotranspiration input for a lumped rainfall-runoff model?. Part 2: Towards a simple and efficient potential evapotranspiration model for rainfall-runoff modelling , 2005 .

[36]  S. Grattan,et al.  Estimation of Daytime Net Radiation Over Well‐Watered Grass , 1992 .

[37]  Giuseppe Ciraolo,et al.  A simple method to directly retrieve reference evapotranspiration from geostationary satellite images , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[38]  A. Holtslag,et al.  Influence of Soil Moisture on Boundary Layer Cloud Development , 2004 .

[39]  J. F. Meirink,et al.  Retrieval and validation of global, direct, and diffuse irradiance derived from SEVIRI satellite observations , 2013 .

[40]  Nader Katerji,et al.  FAO-56 methodology for determining water requirement of irrigated crops: critical examination of the concepts, alternative proposals and validation in Mediterranean region , 2014, Theoretical and Applied Climatology.