An Augmented Lagrangian-Based Approach to the Oseen Problem
暂无分享,去创建一个
[1] A. Quarteroni,et al. Numerical Approximation of Partial Differential Equations , 2008 .
[2] R. Lehoucq,et al. A Primal-Based Penalty Preconditioner for Elliptic Saddle Point Systems , 2006, SIAM J. Numer. Anal..
[3] I. Babuska,et al. Locking effects in the finite element approximation of elasticity problems , 1992 .
[4] Maxim A. Olshanskii,et al. Convergence Analysis of a Multigrid Method for a Convection-Dominated Model Problem , 2004, SIAM J. Numer. Anal..
[5] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[6] Gene H. Golub,et al. On Solving Block-Structured Indefinite Linear Systems , 2003, SIAM J. Sci. Comput..
[7] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[8] V. John. Higher order finite element methods and multigrid solvers in a benchmark problem for the 3D Navier–Stokes equations , 2002 .
[9] Andrew J. Wathen,et al. A Preconditioner for the Steady-State Navier-Stokes Equations , 2002, SIAM J. Sci. Comput..
[10] Andrew J. Wathen,et al. Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations , 2002, Numerische Mathematik.
[11] R. Fletcher. Practical Methods of Optimization , 1988 .
[12] T. Hughes,et al. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .
[13] Stefan Turek,et al. Efficient Solvers for Incompressible Flow Problems - An Algorithmic and Computational Approach , 1999, Lecture Notes in Computational Science and Engineering.
[14] P. Wesseling,et al. Geometric multigrid with applications to computational fluid dynamics , 2001 .
[15] M. Stynes,et al. Numerical methods for singularly perturbed differential equations : convection-diffusion and flow problems , 1996 .
[16] W. Hackbusch,et al. Downwind Gauß‐Seidel‐Smoothing for Convection‐Dominated Problems , 1997, Numer. Linear Algebra Appl..
[17] Joachim Schöberl,et al. Multigrid methods for a parameter dependent problem in primal variables , 1999, Numerische Mathematik.
[18] Chen Greif,et al. Preconditioners for the discretized time-harmonic Maxwell equations in mixed form , 2007, Numer. Linear Algebra Appl..
[19] M. Olshanskii. A low order Galerkin finite element method for the Navier–Stokes equations of steady incompressible flow: a stabilization issue and iterative methods , 2002 .
[20] S. Vanka. Block-implicit multigrid solution of Navier-Stokes equations in primitive variables , 1986 .
[21] A. Wathen. Realistic Eigenvalue Bounds for the Galerkin Mass Matrix , 1987 .
[22] Gert Lube,et al. Stabilized Galerkin finite element methods for convection dominated and incompressible flow problems , 1994 .
[23] M. Fortin,et al. Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .
[24] A. Ramage. A multigrid preconditioner for stabilised discretisations of advection-diffusion problems , 1999 .
[25] Gunar Matthies,et al. International Journal for Numerical Methods in Fluids Higher-order Finite Element Discretizations in a Benchmark Problem for Incompressible Flows , 2022 .
[26] G. Wittum,et al. Downwind numbering: robust multigrid for convection—diffusion problems , 1997 .
[27] Joseph E. Pasciak,et al. On the stability of the L2 projection in H1(Omega) , 2002, Math. Comput..
[28] Jinchao Xu,et al. Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..
[29] Roger Fletcher,et al. Practical methods of optimization; (2nd ed.) , 1987 .
[30] Howard C. Elman,et al. Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations , 1996, SIAM J. Sci. Comput..
[31] Maxim A. Olshanskii,et al. Grad-div stablilization for Stokes equations , 2003, Math. Comput..
[32] A. Wathen,et al. On parameter choice and iterative convergence for stabilised discretisations of advection-diffusion problems , 1999 .
[33] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[34] D. R. Fokkema,et al. BiCGstab(ell) for Linear Equations involving Unsymmetric Matrices with Complex Spectrum , 1993 .
[35] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[36] Clark R. Dohrmann,et al. Quadratic finite elements and incompressible viscous flows , 2006 .
[37] Anne Greenbaum,et al. Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.
[38] S. Turek. Efficient solvers for incompressible flow problems: An algorithmic approach . . , 1998 .
[39] Thomas Probst,et al. Downwind Gauß-Seidel Smoothing for Convection Dominated Problems , 1997, Numer. Linear Algebra Appl..