An Augmented Lagrangian-Based Approach to the Oseen Problem

We describe an effective solver for the discrete Oseen problem based on an augmented Lagrangian formulation of the corresponding saddle point system. The proposed method is a block triangular preconditioner used with a Krylov subspace iteration like BiCGStab. The crucial ingredient is a novel multigrid approach for the (1,1) block, which extends a technique introduced by Schoberl for elasticity problems to nonsymmetric problems. Our analysis indicates that this approach results in fast convergence, independent of the mesh size and largely insensitive to the viscosity. We present experimental evidence for both isoP2-P0 and isoP2-P1 finite elements in support of our conclusions. We also show results of a comparison with two state-of-the-art preconditioners, showing the competitiveness of our approach.

[1]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[2]  R. Lehoucq,et al.  A Primal-Based Penalty Preconditioner for Elliptic Saddle Point Systems , 2006, SIAM J. Numer. Anal..

[3]  I. Babuska,et al.  Locking effects in the finite element approximation of elasticity problems , 1992 .

[4]  Maxim A. Olshanskii,et al.  Convergence Analysis of a Multigrid Method for a Convection-Dominated Model Problem , 2004, SIAM J. Numer. Anal..

[5]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[6]  Gene H. Golub,et al.  On Solving Block-Structured Indefinite Linear Systems , 2003, SIAM J. Sci. Comput..

[7]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[8]  V. John Higher order finite element methods and multigrid solvers in a benchmark problem for the 3D Navier–Stokes equations , 2002 .

[9]  Andrew J. Wathen,et al.  A Preconditioner for the Steady-State Navier-Stokes Equations , 2002, SIAM J. Sci. Comput..

[10]  Andrew J. Wathen,et al.  Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations , 2002, Numerische Mathematik.

[11]  R. Fletcher Practical Methods of Optimization , 1988 .

[12]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[13]  Stefan Turek,et al.  Efficient Solvers for Incompressible Flow Problems - An Algorithmic and Computational Approach , 1999, Lecture Notes in Computational Science and Engineering.

[14]  P. Wesseling,et al.  Geometric multigrid with applications to computational fluid dynamics , 2001 .

[15]  M. Stynes,et al.  Numerical methods for singularly perturbed differential equations : convection-diffusion and flow problems , 1996 .

[16]  W. Hackbusch,et al.  Downwind Gauß‐Seidel‐Smoothing for Convection‐Dominated Problems , 1997, Numer. Linear Algebra Appl..

[17]  Joachim Schöberl,et al.  Multigrid methods for a parameter dependent problem in primal variables , 1999, Numerische Mathematik.

[18]  Chen Greif,et al.  Preconditioners for the discretized time-harmonic Maxwell equations in mixed form , 2007, Numer. Linear Algebra Appl..

[19]  M. Olshanskii A low order Galerkin finite element method for the Navier–Stokes equations of steady incompressible flow: a stabilization issue and iterative methods , 2002 .

[20]  S. Vanka Block-implicit multigrid solution of Navier-Stokes equations in primitive variables , 1986 .

[21]  A. Wathen Realistic Eigenvalue Bounds for the Galerkin Mass Matrix , 1987 .

[22]  Gert Lube,et al.  Stabilized Galerkin finite element methods for convection dominated and incompressible flow problems , 1994 .

[23]  M. Fortin,et al.  Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .

[24]  A. Ramage A multigrid preconditioner for stabilised discretisations of advection-diffusion problems , 1999 .

[25]  Gunar Matthies,et al.  International Journal for Numerical Methods in Fluids Higher-order Finite Element Discretizations in a Benchmark Problem for Incompressible Flows , 2022 .

[26]  G. Wittum,et al.  Downwind numbering: robust multigrid for convection—diffusion problems , 1997 .

[27]  Joseph E. Pasciak,et al.  On the stability of the L2 projection in H1(Omega) , 2002, Math. Comput..

[28]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[29]  Roger Fletcher,et al.  Practical methods of optimization; (2nd ed.) , 1987 .

[30]  Howard C. Elman,et al.  Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations , 1996, SIAM J. Sci. Comput..

[31]  Maxim A. Olshanskii,et al.  Grad-div stablilization for Stokes equations , 2003, Math. Comput..

[32]  A. Wathen,et al.  On parameter choice and iterative convergence for stabilised discretisations of advection-diffusion problems , 1999 .

[33]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[34]  D. R. Fokkema,et al.  BiCGstab(ell) for Linear Equations involving Unsymmetric Matrices with Complex Spectrum , 1993 .

[35]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[36]  Clark R. Dohrmann,et al.  Quadratic finite elements and incompressible viscous flows , 2006 .

[37]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[38]  S. Turek Efficient solvers for incompressible flow problems: An algorithmic approach . . , 1998 .

[39]  Thomas Probst,et al.  Downwind Gauß-Seidel Smoothing for Convection Dominated Problems , 1997, Numer. Linear Algebra Appl..