Basal ganglia contributions to motor control: a vigorous tutor

[1]  F. Plum Handbook of Physiology. , 1960 .

[2]  M. Hallett,et al.  EMG analysis of stereotyped voluntary movements in man. , 1975, Journal of neurology, neurosurgery, and psychiatry.

[3]  M. Hallett,et al.  A physiological mechanism of bradykinesia. , 1980, Brain : a journal of neurology.

[4]  F. Horak,et al.  Influence of globus pallidus on arm movements in monkeys. I. Effects of kainic acid-induced lesions. , 1984, Journal of neurophysiology.

[5]  F. Horak,et al.  Influence of the globus pallidus on arm movements in monkeys. III. Timing of movement-related information. , 1985, Journal of neurophysiology.

[6]  S. Bouisset,et al.  Posturo-kinetic organisation during the early phase of voluntary upper limb movement. 1. Normal subjects. , 1988, Journal of neurology, neurosurgery, and psychiatry.

[7]  L. Tremblay,et al.  Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism , 1991, Brain Research.

[8]  W T Thach,et al.  Basal ganglia motor control. III. Pallidal ablation: normal reaction time, muscle cocontraction, and slow movement. , 1991, Journal of neurophysiology.

[9]  J. Wayne Aldridge,et al.  Bursting properties of units in cat globus pallidus and entopeduncular nucleus: the effect of excitotoxic striatal lesions , 1991, Brain Research.

[10]  M. Taussig The Nervous System , 1991 .

[11]  W. T. Thach,et al.  Basal ganglia motor control. I. Nonexclusive relation of pallidal discharge to five movement modes. , 1991, Journal of neurophysiology.

[12]  M. Kimura,et al.  Effects of reversible blockade of basal ganglia on a voluntary arm movement. , 1992, Journal of neurophysiology.

[13]  J. Sweatt,et al.  Mechanisms of memory. , 2003, Journal of geriatric psychiatry and neurology.

[14]  Scott T. Grafton,et al.  Network analysis of motor system connectivity in Parkinson's disease: Modulation of thalamocortical interactions after pallidotomy , 1994 .

[15]  H Mushiake,et al.  Pallidal neuron activity during sequential arm movements. , 1995, Journal of neurophysiology.

[16]  M. Merzenich,et al.  Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  M. E. Anderson,et al.  Changes in the control of arm position, movement, and thalamic discharge during local inactivation in the globus pallidus of the monkey. , 1996, Journal of neurophysiology.

[18]  J. Mink THE BASAL GANGLIA: FOCUSED SELECTION AND INHIBITION OF COMPETING MOTOR PROGRAMS , 1996, Progress in Neurobiology.

[19]  M. E. Anderson,et al.  Pallidal discharge related to the kinematics of reaching movements in two dimensions. , 1997, Journal of neurophysiology.

[20]  J. Ashe Force and the motor cortex , 1997, Behavioural Brain Research.

[21]  C. Ghez,et al.  Discrete and continuous planning of hand movements and isometric force trajectories , 1997, Experimental Brain Research.

[22]  J. Flanagan,et al.  The reaching movements of patients with Parkinson's disease under self-determined maximal speed and visually cued conditions. , 1998, Brain : a journal of neurology.

[23]  B. Weber,et al.  Context-dependent force coding in motor and premotor cortical areas , 1999, Experimental Brain Research.

[24]  J. Mink,et al.  Impaired reaching and grasping after focal inactivation of globus pallidus pars interna in the monkey. , 1999, Journal of neurophysiology.

[25]  P. Redgrave,et al.  The basal ganglia: a vertebrate solution to the selection problem? , 1999, Neuroscience.

[26]  P. Kuhl,et al.  Birdsong and human speech: common themes and mechanisms. , 1999, Annual review of neuroscience.

[27]  M Akamatsu,et al.  Changes in spinal excitability during choice reaction time: the H reflex as a probe of information transmission. , 2000, Psychophysiology.

[28]  C Ghez,et al.  Learning of Visuomotor Transformations for Vectorial Planning of Reaching Trajectories , 2000, The Journal of Neuroscience.

[29]  M. Gernert,et al.  Deficit of Striatal Parvalbumin-Reactive GABAergic Interneurons and Decreased Basal Ganglia Output in a Genetic Rodent Model of Idiopathic Paroxysmal Dystonia , 2000, The Journal of Neuroscience.

[30]  J C Houk,et al.  Context dependency in the globus pallidus internal segment during targeted arm movements. , 2001, Journal of neurophysiology.

[31]  D M Corcos,et al.  Control of movement distance in Parkinson's disease , 2001, Movement disorders : official journal of the Movement Disorder Society.

[32]  M. Inase,et al.  Pallidal activity is involved in visuomotor association learning in monkeys , 2001, The European journal of neuroscience.

[33]  A. Parent,et al.  Axonal collateralization in primate basal ganglia and related thalamic nuclei , 2002 .

[34]  Effects of pallidotomy and levodopa on walking and reaching movements in Parkinson's disease , 2003, Movement disorders : official journal of the Movement Disorder Society.

[35]  Barbara J Knowlton,et al.  Analysis of probabilistic classification learning in patients with Parkinson's disease before and after pallidotomy surgery. , 2003, Learning & memory.

[36]  Scott T. Grafton,et al.  Basal ganglia network mediates the control of movement amplitude , 2003, Experimental Brain Research.

[37]  Scott T. Grafton,et al.  Motor subcircuits mediating the control of movement extent and speed. , 2003, Journal of neurophysiology.

[38]  E. Fetz,et al.  Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement , 2003, Nature Neuroscience.

[39]  J. Vitek,et al.  Stimulation of the Subthalamic Nucleus Changes the Firing Pattern of Pallidal Neurons , 2003, The Journal of Neuroscience.

[40]  Marjan Jahanshahi,et al.  Pallidotomy and incidental sequence learning in Parkinson's disease , 2003, Neuroreport.

[41]  M. Habib,et al.  Athymhormia and disorders of motivation in Basal Ganglia disease. , 2004, The Journal of neuropsychiatry and clinical neurosciences.

[42]  J. Kleim,et al.  Cortical Synaptogenesis and Motor Map Reorganization Occur during Late, But Not Early, Phase of Motor Skill Learning , 2004, The Journal of Neuroscience.

[43]  M. Desmurget,et al.  On-line motor control in patients with Parkinson's disease. , 2004, Brain : a journal of neurology.

[44]  Gerald E. Hough,et al.  Revised nomenclature for avian telencephalon and some related brainstem nuclei , 2004, The Journal of comparative neurology.

[45]  P. Strick,et al.  Macro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits. , 2004, Progress in brain research.

[46]  M. Brainard Contributions of the Anterior Forebrain Pathway to Vocal Plasticity , 2004, Annals of the New York Academy of Sciences.

[47]  M. Hallett,et al.  Neuronal activity in the basal ganglia and thalamus in patients with dystonia , 2004, Clinical Neurophysiology.

[48]  J. W. Aldridge,et al.  Basal ganglia neural mechanisms of natural movement sequences. , 2004, Canadian journal of physiology and pharmacology.

[49]  L. Tremblay,et al.  Behavioural disorders induced by external globus pallidus dysfunction in primates II. Anatomical study. , 2004, Brain : a journal of neurology.

[50]  Chantal François,et al.  Behavioural disorders induced by external globus pallidus dysfunction in primates: I. Behavioural study. , 2004, Brain : a journal of neurology.

[51]  A. Graybiel,et al.  Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories , 2005, Nature.

[52]  E. Miller,et al.  Different time courses of learning-related activity in the prefrontal cortex and striatum , 2005, Nature.

[53]  I. Bar-Gad,et al.  1 SEQUENTIAL MOTOR BEHAVIOR AND THE BASAL GANGLIA Evidence from a serial reaction time task in monkeys , 2005 .

[54]  J. Doyon,et al.  Reorganization and plasticity in the adult brain during learning of motor skills , 2005, Current Opinion in Neurobiology.

[55]  J. Doyon,et al.  Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[56]  A. Doupe,et al.  Contributions of an avian basal ganglia–forebrain circuit to real-time modulation of song , 2005, Nature.

[57]  L. Ramig,et al.  Speech treatment for Parkinson's disease. , 2005, NeuroRehabilitation.

[58]  P. Viviani,et al.  Error parsing in visuomotor pointing reveals independent processing of amplitude and direction. , 2005, Journal of neurophysiology.

[59]  Alan Wing,et al.  Force related activations in rhythmic sequence production , 2005, NeuroImage.

[60]  Robert S Turner,et al.  Context-Dependent Modulation of Movement-Related Discharge in the Primate Globus Pallidus , 2005, The Journal of Neuroscience.

[61]  Suzanne N Haber,et al.  Dopamine Replacement Therapy Does Not Restore the Full Spectrum of Normal Pallidal Activity in the 1-Methyl-4-Phenyl-1,2,3,6-Tetra-Hydropyridine Primate Model of Parkinsonism , 2006, The Journal of Neuroscience.

[62]  Kae Nakamura,et al.  Basal ganglia orient eyes to reward. , 2006, Journal of neurophysiology.

[63]  Ziv M. Williams,et al.  Selective enhancement of associative learning by microstimulation of the anterior caudate , 2006, Nature Neuroscience.

[64]  P. Dayan,et al.  Tonic dopamine: opportunity costs and the control of response vigor , 2007, Psychopharmacology.

[65]  Michel Desmurget,et al.  “Paradoxical Kinesis” is not a Hallmark of Parkinson's disease but a general property of the motor system , 2006, Movement disorders : official journal of the Movement Disorder Society.

[66]  J C Houk,et al.  Action selection and refinement in subcortical loops through basal ganglia and cerebellum , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[67]  J. Vonsattel,et al.  Huntington disease models and human neuropathology: similarities and differences , 2007, Acta Neuropathologica.

[68]  Michel Desmurget,et al.  Functional anatomy of motor urgency , 2007, NeuroImage.

[69]  Paul Cisek,et al.  Cortical mechanisms of action selection: the affordance competition hypothesis , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[70]  John M. Ennis,et al.  A neurobiological theory of automaticity in perceptual categorization. , 2007, Psychological review.

[71]  Emmanuel Guigon,et al.  Computational Motor Control : Redundancy and Invariance , 2007 .

[72]  J. Jankovic,et al.  Short and long-term motor and cognitive outcome of staged bilateral pallidotomy: a retrospective analysis , 2007, Acta Neurochirurgica.

[73]  Thomas Wichmann,et al.  Circuits and circuit disorders of the basal ganglia. , 2007, Archives of neurology.

[74]  E. Bézard,et al.  Shaping of Motor Responses by Incentive Values through the Basal Ganglia , 2007, The Journal of Neuroscience.

[75]  J. Krakauer,et al.  Why Don't We Move Faster? Parkinson's Disease, Movement Vigor, and Implicit Motivation , 2007, The Journal of Neuroscience.

[76]  P. Strick,et al.  Skill representation in the primary motor cortex after long-term practice. , 2007, Journal of neurophysiology.

[77]  P. Starr,et al.  Pallidal deep brain stimulation in patients with cranial–cervical dystonia (Meige syndrome) , 2007, Movement disorders : official journal of the Movement Disorder Society.

[78]  Hong Yu,et al.  Role of individual basal ganglia nuclei in force amplitude generation. , 2007, Journal of neurophysiology.

[79]  R. Dolan,et al.  How the Brain Translates Money into Force: A Neuroimaging Study of Subliminal Motivation , 2007, Science.

[80]  Thomas Wichmann,et al.  Pathophysiology of Parkinsonism , 2008, Clinical Neurophysiology.

[81]  M. Desmurget,et al.  Testing basal ganglia motor functions through reversible inactivations in the posterior internal globus pallidus. , 2008, Journal of neurophysiology.

[82]  M. Dresselhaus,et al.  A Specialized Forebrain Circuit for Vocal Babbling in the Juvenile Songbird , 2008 .

[83]  A. Graybiel Habits, rituals, and the evaluative brain. , 2008, Annual review of neuroscience.

[84]  Mathias Pessiglione,et al.  Disconnecting force from money: effects of basal ganglia damage on incentive motivation. , 2008, Brain : a journal of neurology.

[85]  J. Krakauer,et al.  A computational neuroanatomy for motor control , 2008, Experimental Brain Research.

[86]  C. McIntyre,et al.  Thalamocortical relay fidelity varies across subthalamic nucleus deep brain stimulation protocols in a data-driven computational model. , 2008, Journal of neurophysiology.

[87]  James R. Tresilian,et al.  The time course of amplitude specification in brief interceptive actions , 2008, Experimental Brain Research.

[88]  D. Surmeier,et al.  Dichotomous Anatomical Properties of Adult Striatal Medium Spiny Neurons , 2008, The Journal of Neuroscience.

[89]  F. Piedimonte,et al.  Pallidal surgery for the treatment of primary generalized dystonia: Long-term follow-up , 2008, Clinical Neurology and Neurosurgery.

[90]  Pierre R. Burkhard,et al.  Velocity control in Parkinson’s disease: a quantitative analysis of isochrony in scribbling movements , 2009, Experimental Brain Research.

[91]  P. Greengard,et al.  Dichotomous Dopaminergic Control of Striatal Synaptic Plasticity , 2008, Science.

[92]  Franck Vidal,et al.  Neural inhibition and interhemispheric connections in two-choice reaction time: a Laplacian ERP study. , 2009, Psychophysiology.

[93]  Deborah L. Harrington,et al.  Motor Functions of the Basal Ganglia , 2009 .

[94]  D. Feldman Synaptic mechanisms for plasticity in neocortex. , 2009, Annual review of neuroscience.

[95]  B. Day,et al.  What can man do without basal ganglia motor output? The effect of combined unilateral subthalamotomy and pallidotomy in a patient with Parkinson's disease , 2009, Experimental Neurology.

[96]  James C. Houk,et al.  Basal ganglia contribution to the initiation of corrective submovements , 2009, NeuroImage.

[97]  Timothy Edward John Behrens,et al.  Effort-Based Cost–Benefit Valuation and the Human Brain , 2009, The Journal of Neuroscience.

[98]  J. Doyon,et al.  Contributions of the basal ganglia and functionally related brain structures to motor learning , 2009, Behavioural Brain Research.

[99]  Izhar Bar-Gad,et al.  The neurophysiological correlates of motor tics following focal striatal disinhibition. , 2009, Brain : a journal of neurology.

[100]  P. Starr,et al.  Induction of Bradykinesia with Pallidal Deep Brain Stimulation in Patients with Cranial-Cervical Dystonia , 2009, Stereotactic and Functional Neurosurgery.

[101]  W. Dauer,et al.  Primary dystonia: molecules and mechanisms , 2009, Nature Reviews Neurology.

[102]  Robert S Turner,et al.  Deep brain stimulation of the globus pallidus internus in the parkinsonian primate: local entrainment and suppression of low-frequency oscillations. , 2009, Journal of neurophysiology.

[103]  J. Salamone,et al.  Dopamine, Behavioral Economics, and Effort , 2009, Front. Behav. Neurosci..

[104]  David J. Barker,et al.  Decreased Firing of Striatal Neurons Related to Licking during Acquisition and Overtraining of a Licking Task , 2009, The Journal of Neuroscience.

[105]  Michale S Fee,et al.  A basal ganglia-forebrain circuit in the songbird biases motor output to avoid vocal errors , 2009, Proceedings of the National Academy of Sciences.

[106]  Paul Cisek,et al.  Response competition in the primary motor cortex: corticospinal excitability reflects response replacement during simple decisions. , 2010, Journal of neurophysiology.

[107]  C. Saper,et al.  Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome , 2010, The Journal of comparative neurology.

[108]  Alan D Dorval,et al.  Deep brain stimulation alleviates parkinsonian bradykinesia by regularizing pallidal activity. , 2010, Journal of neurophysiology.

[109]  B. Balleine,et al.  Human and Rodent Homologies in Action Control: Corticostriatal Determinants of Goal-Directed and Habitual Action , 2010, Neuropsychopharmacology.

[110]  Michel Desmurget,et al.  Motor Sequences and the Basal Ganglia: Kinematics, Not Habits , 2010, The Journal of Neuroscience.

[111]  S. Sherman,et al.  The corticothalamocortical circuit drives higher-order cortex in the mouse , 2009, Nature Neuroscience.