Oblique Spatial Dispersive Shock Waves in Nonlinear Schrödinger Flows

In dispersive media, hydrodynamic singularities are resolved by coherent wavetrains known as dispersive shock waves (DSWs). Only dynamically expanding, temporal DSWs are possible in one-dimensional media. The additional degree of freedom inherent in two-dimensional media allows for the generation of time-independent DSWs that exhibit spatial expansion. Spatial oblique DSWs, dispersive analogs of oblique shocks in classical media, are constructed utilizing Whitham modulation theory for a class of nonlinear Schrodinger boundary value problems. Self-similar, simple wave solutions of the modulation equations yield relations between the DSW's orientation and the upstream/downstream flow fields. Time dependent numerical simulations demonstrate a convective or absolute instability of oblique DSWs in supersonic flow over obstacles. The convective instability results in an effective stabilization of the DSW.

[1]  V. G. Sala,et al.  Polariton Superfluids Reveal Quantum Hydrodynamic Solitons , 2011, Science.

[2]  I Coddington,et al.  Observations on sound propagation in rapidly rotating Bose-Einstein condensates. , 2005, Physical review letters.

[3]  P. N. Lebedev,et al.  Supersonic flow past finite-length bodies in dispersive hydrodynamics , 1996 .

[4]  M. Hoefer,et al.  Dispersive shock waves and modulation theory , 2016, 1602.06163.

[5]  M. Lighthill Supersonic Flow and Shock Waves , 1949, Nature.

[6]  M. A. Hoefer,et al.  Dark Solitons, Dispersive Shock Waves, and Transverse Instabilities , 2011, Multiscale Model. Simul..

[7]  Zachary Dutton,et al.  Observation of Quantum Shock Waves Created with Ultra- Compressed Slow Light Pulses in a Bose-Einstein Condensate , 2001, Science.

[8]  A. Kamchatnov,et al.  Flow of a Bose-Einstein condensate in a quasi-one-dimensional channel under the action of a piston , 2010 .

[9]  G. Whitham,et al.  Non-linear dispersive waves , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[10]  M. Ablowitz,et al.  Interactions and asymptotics of dispersive shock waves – Korteweg–de Vries equation , 2013, 1301.1032.

[11]  A. Kamchatnov,et al.  Stabilization of solitons generated by a supersonic flow of Bose-Einstein condensate past an obstacle. , 2007, Physical review letters.

[12]  C. Ciuti Quantum fluids of light , 2012, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[13]  C. David Levermore,et al.  The Semiclassical Limit of the Defocusing NLS Hierarchy , 1999 .

[14]  M. Ablowitz,et al.  Dispersive shock waves in the Kadomtsev–Petviashvili and two dimensional Benjamin–Ono equations , 2015, 1507.08207.

[15]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[16]  Y. Kartashov,et al.  Two-dimensional dispersive shock waves in dissipative optical media. , 2013, Optics letters.

[17]  A. Gurevich,et al.  Nonstationary structure of a collisionless shock wave , 1973 .

[18]  B. Dubrovin,et al.  On critical behaviour in generalized Kadomtsev-Petviashvili equations , 2015, 1510.01580.

[19]  William E. Schiesser,et al.  Linear and nonlinear waves , 2009, Scholarpedia.

[20]  G. A. El,et al.  Dispersive and Diffusive-Dispersive Shock Waves for Nonconvex Conservation Laws , 2015, SIAM Rev..

[21]  S. Venakides LONG TIME ASYMPTOTICS OF THE KORTEWEG-DE VRIES EQUATION , 1986 .

[22]  S. Turitsyn,et al.  Instability and collapse of solitons in media with a defocusing nonlinearity , 1989 .

[23]  P. Lax Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .

[24]  M. A. Hoefer,et al.  Shock Waves in Dispersive Hydrodynamics with Nonconvex Dispersion , 2016, SIAM J. Appl. Math..

[25]  I. Coddington,et al.  Dispersive and classical shock waves in Bose-Einstein condensates and gas dynamics , 2006 .

[26]  M. A. Hoefer,et al.  Shock Waves in Dispersive Eulerian Fluids , 2013, J. Nonlinear Sci..

[27]  V. V. Khodorovskii,et al.  Two-dimensional supersonic nonlinear Schrödinger flow past an extended obstacle. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Jason W. Fleischer,et al.  Dispersive, superfluid-like shock waves in nonlinear optics: Properties & interactions , 2007, 2007 Quantum Electronics and Laser Science Conference.

[29]  A. Kamchatnov,et al.  Condition for convective instability of dark solitons , 2011, 1105.0789.

[30]  Wolfgang Ketterle,et al.  Bose-Einstein Condensation: Identity Crisis for Indistinguishable Particles , 2007 .

[31]  Radiation of linear waves in the stationary flow of a Bose-Einstein condensate past an obstacle , 2006, cond-mat/0611149.

[32]  W. Ketterle,et al.  Bose-Einstein condensation , 1997 .

[33]  M. Hoefer,et al.  Theory of two-dimensional oblique dispersive shock waves in supersonic flow of a superfluid , 2009 .

[34]  C. David Levermore,et al.  The small dispersion limit of the Korteweg‐de Vries equation. III , 1983 .

[35]  M. Ablowitz,et al.  Piston dispersive shock wave problem. , 2007, Physical review letters.

[36]  Giancarlo Ruocco,et al.  Shocks in nonlocal media. , 2007, Physical review letters.

[37]  V. V. Khodorovskii,et al.  Supersonic flow past bodies in dispersive hydrodynamics , 1995 .

[38]  Christof Sparber,et al.  Numerical Study of Oscillatory Regimes in the Kadomtsev–Petviashvili Equation , 2006, J. Nonlinear Sci..

[39]  G. El,et al.  Resolution of a shock in hyperbolic systems modified by weak dispersion. , 2005, Chaos.

[40]  G. El,et al.  Two-dimensional periodic waves in supersonic flow of a Bose–Einstein condensate , 2006, nlin/0609022.

[41]  W. Kwon,et al.  Observation of von Kármán Vortex Street in an Atomic Superfluid Gas. , 2016, Physical review letters.

[42]  C. Klein,et al.  Numerical study of shock formation in the dispersionless Kadomtsev-Petviashvili equation and dispersive regularizations , 2013, 1304.6513.

[43]  Stephanos Venakides,et al.  The Small Dispersion Limit of the Korteweg-De Vries Equation , 1987 .