Optimality theory for semi-infinite linear programming ∗

This paper presents an exhaustive approach to optimality theory in semi-infinite linear programming, placing a special emphasis on generality. After surveying optimality conditions for general problems, a detailed analysis is made of problems in which the coefficients are continuous functions of a parameter which varies on a compact set, adopting a feasible directions approach. Lastly, the case of analytical coefficients over an interval is considered in some detail.

[1]  B. Brosowski,et al.  An extension of strong uniqueness to rational approximation , 1986 .

[2]  A. Ben-Tal,et al.  Optimality conditions for convex semi‐infinite programming problems , 1980 .

[3]  Werner Krabs,et al.  Optimierung und Approximation , 1975 .

[4]  A refinement of an optimality criterion and its application to parametric programming , 1984 .

[5]  M. Goberna,et al.  Conditions for the uniqueness of the optimal solution in linear semi-infinite programming , 1992 .

[6]  Abraham Charnes,et al.  ON REPRESENTATIONS OF SEMI-INFINITE PROGRAMS WHICH HAVE NO DUALITY GAPS. , 1965 .

[7]  Klaus Roleff,et al.  A stable multiple exchange algorithm for linear sip , 1979 .

[8]  Robert G. Jeroslow,et al.  Duality in Semi-Infinite Linear Programming , 1983 .

[9]  Aharon Ben-Tal,et al.  Optimality in nonlinear programming: A feasible directions approach , 1981 .

[10]  Kenneth O. Kortanek,et al.  Semi-Infinite Programming: Theory, Methods, and Applications , 1993, SIAM Rev..

[11]  Bruno Brosowski A criterion for optimality and its application to parametric programming , 1985 .

[12]  E. Polak On the mathematical foundations of nondifferentiable optimization in engineering design , 1987 .

[13]  Bruno Brosowski,et al.  Parametric semi-infinite optimization , 1982 .

[14]  E. J. Anderson A New Primal Algorithm for Semi-Infinite Linear Programming , 1985 .

[15]  Kim C. Border,et al.  Fixed point theorems with applications to economics and game theory: Fixed point theorems for correspondences , 1985 .

[16]  T. Fischer Strong unicity and alternation for linear optimization , 1991 .

[17]  Klaus Glashoff,et al.  Linear Optimization and Approximation , 1983 .

[18]  M. A. Goberna,et al.  Conditions for the Closedness of the Characteristic Cone Associated with an Infinite Linear System , 1985 .

[19]  Marco A. López,et al.  A theory of linear inequality systems , 1988 .

[20]  A. Charnes,et al.  Duality in Semi-Infinite Programs and some Works of Haar and Caratheodory , 1963 .