Design and Analysis of a Performance-Optimized CMOS UWB Distributed LNA

In this paper, the systematic design and analysis of a CMOS performance-optimized distributed low-noise amplifier (DLNA) comprising bandwidth-enhanced cascode cells will be presented. Each cascode cell employs an inductor between the common-source and common-gate devices to enhance the bandwidth, while reducing the high-frequency input-referred noise. The noise analysis and optimization of the DLNA accurately accounts for the impact of thermal noise of line terminations and all device noise sources of each CMOS cascode cell including flicker noise, correlated gate-induced noise and channel thermal noise on the overall noise figure. A three-stage performance-optimized wideband DLNA has been designed and fabricated in a 0.18-mum SiGe process, where only MOS transistors were utilized. Measurements of the test chip show a flat noise figure of 2.9 dB, a forward gain of 8 dB, and input and output return losses below -12 dB and -10 dB, respectively, across the 7.5 GHz UWB band. The circuit exhibits an average IIP3 of -3.55 dBm. The 872 mum times 872 mum DLNA chip consumes 12 mA of current from a 1.8-V DC voltage.

[1]  D. Allstot,et al.  A CMOS 3.1-10.6 GHz UWB LNA employing stagger-compensated series peaking , 2006, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2006.

[2]  D.M.W. Leenaerts,et al.  An interference-robust receiver for ultra-wideband radio in SiGe BiCMOS technology , 2005, IEEE Journal of Solid-State Circuits.

[3]  C. Nguyen,et al.  Low-power-consumption and high-gain CMOS distributed amplifiers using cascade of inductively coupled common-source gain cells for UWB systems , 2006, IEEE Transactions on Microwave Theory and Techniques.

[4]  James B. Beyer,et al.  MESFET Distributed Amplifier Design Guidelines , 1984 .

[5]  Robert W. Dutton,et al.  A noise optimization technique for integrated low-noise amplifiers , 2002, IEEE J. Solid State Circuits.

[6]  A. Bevilacqua,et al.  An ultrawideband CMOS low-noise amplifier for 3.1-10.6-GHz wireless receivers , 2004, IEEE Journal of Solid-State Circuits.

[7]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[8]  P. Heydari,et al.  A Novel Ultra-Low Power (ULP) Low Noise Amplifier using Differential Inductor Feedback , 2006, 2006 Proceedings of the 32nd European Solid-State Circuits Conference.

[9]  Ahmad Yazdi,et al.  Design and analysis of an ultrawide-band distributed CMOS mixer - eScholarship , 2005 .

[10]  Thomas H. Lee The Design of CMOS Radio-Frequency Integrated Circuits , 1998 .

[11]  V. Srinivasa Somayazulu,et al.  Ultrawideband radio design: the promise of high-speed, short-range wireless connectivity , 2004, Proceedings of the IEEE.

[12]  C.-H. Lee,et al.  A very low power SiGe LNA for UWB application , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[13]  S. Wong,et al.  Exploiting CMOS reverse interconnect scaling in multigigahertz amplifier and oscillator design , 2001, IEEE J. Solid State Circuits.

[14]  B. Razavi,et al.  A UWB CMOS transceiver , 2005, IEEE Journal of Solid-State Circuits.

[15]  Ahmad Yazdi,et al.  Differential Non-Uniform Downsized Distributed Amplifier , 2005 .

[16]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[17]  A. Ismail,et al.  A 3 to 10 GHz LNA using a wideband LC-ladder matching network , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[18]  C. S. Aitchison,et al.  The Intrinsic Noise Figure of the MESFET Distributed Amplifier , 1985 .

[19]  S. Iida,et al.  A 3.1 to 5 GHz CMOS DSSS UWB transceiver for WPANs , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[20]  J. B. Beyer,et al.  On Gain-Bandwidth Product for Distributed Amplifiers (Short Paper) , 1986 .

[21]  Payam Heydari,et al.  A performance optimized CMOS distributed LNA for UWB receivers , 2005, Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005..

[22]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[23]  D. J. Allstot,et al.  -Boosted Common-Gate LNA and Differential , 2005 .

[24]  D.J. Allstot,et al.  G/sub m/-boosted common-gate LNA and differential colpitts VCO/QVCO in 0.18-/spl mu/m CMOS , 2005, IEEE Journal of Solid-State Circuits.

[25]  H. Shigematsu,et al.  4 40 Gb / s CMOS Distributed Amplifier for Fiber-Optic Communication Systems , 2001 .

[26]  Y. Tsividis Operation and modeling of the MOS transistor , 1987 .

[27]  Milton Feng,et al.  Low-power, high-gain, and high-linearity SiGe BiCMOS wide-band low-noise amplifier , 2004 .

[28]  M. Rodwell,et al.  40Gb/s CMOS distributed amplifier for fiber-optic communication systems , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[29]  Ali Hajimiri,et al.  Silicon-based distributed voltage-controlled oscillators , 2001, IEEE J. Solid State Circuits.

[30]  W.R. Hewlett,et al.  Distributed Amplification , 1948, Proceedings of the IRE.

[31]  X Li,et al.  Gm-boosted common-gate LNA and differential colpitts VCO/QVCO in 0.18-μm CMOS , 2005 .

[32]  F. Zhang,et al.  Low-power programmable gain CMOS distributed LNA , 2006, IEEE Journal of Solid-State Circuits.

[33]  D. J. Allstot,et al.  A fully integrated 0.5-5.5 GHz CMOS distributed amplifier , 2000 .

[34]  Kuo-Liang Deng,et al.  A 0.5-14-GHz 10.6-dB CMOS cascode distributed amplifier , 2003, 2003 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.03CH37408).

[35]  Brian Ellis The Design of CMOS Radio-Frequency Integrated Circuits , 2004 .

[36]  D. J. Allstot,et al.  A 0.5-8.5 GHz fully differential CMOS distributed amplifier , 2002 .