Nanofocusing of Toroidal Dipole for Simultaneously Enhanced Electric and Magnetic Fields Using Plasmonic Waveguide

Optical toroidal dipole and electromagnetic field enhancement have attracted much interest owing to their interesting physical features and various potential nanophotonic applications. In this paper, novel antireflective nanofocusing methods to deliver and squeeze toroidal dipole moment with simultaneous enhancement of electric and magnetic fields are suggested. By coupling the two fundamental modes of a metal–insulator–metal waveguide with a partial mirror in a waveguide and a nanocavity, resonant squeezing of longitudinal and perpendicular toroidal dipoles in an ultracompact nanocavity (∼λ2/190) is achieved at the near-telecom wavelengths. Moreover, electric and magnetic field enhancements occur simultaneously in a designated nanocavity. We expect that the proposed scheme would pave a way to engineer nanophotonic waveguide based light-matter interactions by enhancing both electric and magnetic fields. This study would interest both nanophotonics and quantum optics communities.

[1]  Optical magnetic field mapping using a subwavelength aperture. , 2013, Optics express.

[2]  A. B. Harris A system exhibiting toroidal order , 2010, 1006.5199.

[3]  Byoungho Lee,et al.  Critical nanofocusing of magnetic dipole moment using a closed plasmonic tip. , 2017, Optics express.

[4]  H. Atwater,et al.  Plasmonic rainbow trapping structures for light localization and spectrum splitting. , 2011, Physical review letters.

[5]  Y. Kivshar,et al.  Meta-Optics with Mie Resonances , 2017 .

[6]  Dai‐Sik Kim,et al.  Optical field enhancement of nanometer-sized gaps at near-infrared frequencies. , 2015, Optics express.

[7]  Dongfang Li,et al.  Dynamic control of light emission faster than the lifetime limit using VO2 phase-change , 2015, Nature Communications.

[8]  J. Li,et al.  From non- to super-radiating manipulation of a dipolar emitter coupled to a toroidal metastructure. , 2015, Optics express.

[9]  W. Knoll,et al.  Surface-plasmon fluorescence spectroscopy , 2002 .

[10]  Olivier J. F. Martin,et al.  Scanning near-field optical microscopy with aperture probes: Fundamentals and applications , 2000 .

[11]  B. Pettinger,et al.  Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. , 2008, Physical review letters.

[12]  Y. Kivshar,et al.  Multifold Enhancement of Third-Harmonic Generation in Dielectric Nanoparticles Driven by Magnetic Fano Resonances. , 2016, Nano letters.

[13]  S. Spillane,et al.  Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond , 2010, Nanotechnology.

[14]  Din Ping Tsai,et al.  Design of plasmonic toroidal metamaterials at optical frequencies. , 2012, Optics express.

[15]  Rashid Zia,et al.  Quantifying the magnetic nature of light emission , 2012, Nature Communications.

[16]  David R. Smith,et al.  Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas , 2014, Nature Photonics.

[17]  Y. Kivshar,et al.  Multipolar nonlinear nanophotonics , 2016, 1609.02057.

[18]  A Leinse,et al.  Probing the Magnetic Field of Light at Optical Frequencies , 2009, Science.

[19]  D. Gramotnev,et al.  Boosting Local Field Enhancement by on-Chip Nanofocusing and Impedance-Matched Plasmonic Antennas. , 2015, Nano letters.

[20]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[21]  Wilfried Sigle,et al.  Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible. , 2012, Nano letters.

[22]  F. Lederer,et al.  Multipole analysis of meta-atoms , 2011 .

[23]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[24]  Xianfan Xu,et al.  Complementary bowtie aperture for localizing and enhancing optical magnetic field. , 2011, Optics letters.

[25]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[26]  Dai‐Sik Kim,et al.  Selective electric and magnetic sensitivity of aperture probes. , 2015, Optics express.

[27]  Kimani C. Toussaint,et al.  Simultaneously tuning the electric and magnetic plasmonic response using capped bi-metallic nanoantennas. , 2014, Nanoscale.

[28]  M. Lipson,et al.  Broadband mid-infrared frequency comb generation in a Si3N4 microresonator , 2015, Conference on Lasers and Electro-Optics.

[29]  M. Martsenyuk,et al.  Material equations for electromagnetism with toroidal polarizations. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  C Vrejoiu Electromagnetic multipoles in Cartesian coordinates , 2002 .

[31]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[32]  X. P. Hu,et al.  Efficient second-harmonic generation in nonlinear plasmonic waveguide. , 2011, Optics letters.

[33]  Byoungho Lee,et al.  Overview of the Characteristics of Micro- and Nano-Structured Surface Plasmon Resonance Sensors , 2011, Sensors.

[34]  I. Brener,et al.  Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. , 2013, ACS nano.

[35]  Tomasz Szoplik,et al.  Magnetic field concentrator for probing optical magnetic metamaterials. , 2010, Optics express.

[36]  Lukas Novotny,et al.  Excitation of magnetic dipole transitions at optical frequencies. , 2015, Physical review letters.

[37]  Jin Tao,et al.  A subwavelength coupler-type MIM optical filter. , 2009, Optics express.

[38]  G. Vaman,et al.  Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Ming C. Wu,et al.  Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper , 2012, Nature Photonics.

[40]  Alp Sipahigil,et al.  An integrated diamond nanophotonics platform for quantum optical networks , 2017, CLEO 2017.

[41]  G W Burr,et al.  Diabolo nanoantenna for enhancing and confining the magnetic optical field. , 2011, Nano letters.

[42]  Ruisheng Liang,et al.  Plasmonic filters and optical directional couplers based on wide Metal-Insulator-Metal structure. , 2011, Optics express.

[43]  S. Maier,et al.  Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .

[44]  R. Carminati,et al.  Mapping and quantifying electric and magnetic dipole luminescence at the nanoscale. , 2014, Physical review letters.

[45]  Jiaru Chu,et al.  Bridged Bowtie Aperture Antenna for Producing an Electromagnetic Hot Spot , 2017 .

[46]  Marvin J. Weber,et al.  Handbook of Optical Materials , 2002 .

[47]  Lukas Novotny,et al.  Near-field optical microscopy and spectroscopy with pointed probes. , 2006, Annual review of physical chemistry.

[48]  Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures , 2008, 0808.1466.

[49]  B. Chichkov,et al.  Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. , 2012, Nano letters.

[50]  Linfang Shen,et al.  Cross-Diabolo Nanoantenna for Localizing and Enhancing Magnetic Field With Arbitrary Polarization , 2012, Journal of Lightwave Technology.

[51]  S. Burger,et al.  Photonic Metamaterials: Magnetism at Optical Frequencies , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[52]  Giorgio Volpe,et al.  Multipolar radiation of quantum emitters with nanowire optical antennas , 2013, Nature Communications.

[53]  N I Zheludev,et al.  Electromagnetic toroidal excitations in matter and free space. , 2016, Nature materials.

[54]  Yuri S. Kivshar,et al.  High‐Efficiency Dielectric Huygens’ Surfaces , 2015 .

[55]  J. Chen,et al.  Toroidal Dipolar Excitation in Metamaterials Consisting of Metal nanodisks and a Dielectrc Spacer on Metal Substrate , 2017, Scientific Reports.

[56]  Andrei Faraon,et al.  Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles , 2016, Nature Communications.

[57]  Alexandre G. Brolo,et al.  Plasmonics for future biosensors , 2012, Nature Photonics.

[58]  Byoungho Lee,et al.  Trapping light in plasmonic waveguides. , 2010, Optics express.

[59]  A. Zayats,et al.  Nonlinear plasmonics , 2012, Nature Photonics.

[60]  S. Yamasaki,et al.  Metamaterial Waveguide Devices for Integrated Optics , 2017, Materials.

[61]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[62]  Takashi Mukai,et al.  Surface-plasmon-enhanced light emitters based on InGaN quantum wells , 2004, Nature materials.

[63]  C. Neacşu Tip-enhanced near-field optical microscopy , 2011 .

[64]  Byoungho Lee,et al.  Near-infrared coherent perfect absorption in plasmonic metal-insulator-metal waveguide. , 2015, Optics express.

[65]  F. Capolino,et al.  Enhanced Magnetic and Electric Fields via Fano Resonances in Metasurfaces of Circular Clusters of Plasmonic Nanoparticles , 2014 .

[66]  Shota Kita,et al.  On-chip zero-index metamaterials , 2015, Nature Photonics.

[67]  Boris Luk'yanchuk,et al.  Magnetic and electric hotspots with silicon nanodimers. , 2015, Nano letters.

[68]  Xiaobo Yin,et al.  Optical toroidal dipolar response by an asymmetric double-bar metamaterial , 2012, 1212.5651.

[69]  Nikolay I. Zheludev,et al.  Toroidal Lasing Spaser , 2013, Scientific Reports.

[70]  S. Noda,et al.  Magnetic light-matter interactions in a photonic crystal nanocavity. , 2010, Physical review letters.

[71]  Yuri S. Kivshar,et al.  Functional and nonlinear optical metasurfaces , 2015 .

[72]  R C Dunn,et al.  Near-field scanning optical microscopy. , 1999, Chemical reviews.

[73]  Ming Lu,et al.  Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces. , 2017, Nature nanotechnology.

[74]  R. Zia,et al.  Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths , 2012, 1208.2642.

[75]  Gerhard Ertl,et al.  Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. , 2004, Physical review letters.

[76]  Byoungho Lee,et al.  Metamaterials and Metasurfaces for Sensor Applications , 2017, Sensors.

[77]  X. Le roux,et al.  Integrated 2D-Graded Index Plasmonic Lens on a Silicon Waveguide for Operation in the Near Infrared Domain. , 2017, ACS nano.