Low power high data rate wireless endoscopy transceiver

A low power high data rate wireless endoscopy transceiver is presented. Transceiver architecture, circuit topologies and design trade-offs have been considered carefully to satisfy the tight requirements of the medical endoscopy capsule: lower power consumption, high integration degree and high data rate. The prototype, implemented in 0.25@mm CMOS, integrates a super-heterodyne receiver and a super-heterodyne transmitter on a single chip together with an integrated RF local oscillator and LO buffers. The digital modulation and demodulation is also implemented in analog field and no data converters are needed for the whole endoscopy capsule. The measured sensitivity of the receiver is about -70dBm with a data rate 256kbps, and the measured output power of the transmitter could achieve -23dBm with a data rate 1Mbps. The transceiver operates from a power supply of 2.5V, while only consuming 15mW in receiver (RX) mode and 14mW in transmitter (TX) mode.

[1]  Dave Cavalcanti,et al.  Opportunities and challenges in using WPAN and WLAN technologies in medical environments [Accepted from Open Call] , 2007, IEEE Communications Magazine.

[2]  W. Kluge,et al.  A Fully Integrated 2.4-GHz IEEE 802.15.4-Compliant Transceiver for ZigBee™ Applications , 2006, IEEE Journal of Solid-State Circuits.

[3]  Robert Puers,et al.  Inductive powering of a freely moving system , 2005 .

[4]  O. Korostynska,et al.  Development of a Wireless Pressure Measurement System Using Interdigitated Capacitors , 2007, IEEE Sensors Journal.

[5]  Chi Bao-yong 1GHz Monolithic Fractional-N Frequency Synthesizer with a 3-b Third-Order Delta-Sigma Modulator , 2005 .

[6]  K. Numata,et al.  Low-power-consumption direct-conversion CMOS transceiver for multi-standard 5-GHz wireless LAN systems with channel bandwidths of 5-20 MHz , 2006, IEEE Journal of Solid-State Circuits.

[7]  Hanna Pohjonen,et al.  Pervasive Access to Images and Data—The Use of Computing Grids and Mobile/Wireless Devices Across Healthcare Enterprises , 2007, IEEE Transactions on Information Technology in Biomedicine.

[8]  M. W. Kruiskamp,et al.  A CMOS peak detect sample and hold circuit , 1994 .

[9]  Wentai Liu,et al.  Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[10]  Paul R. Gray,et al.  A 30-MHz hybrid analog/digital clock recovery circuit in 2- mu m CMOS , 1990 .

[11]  P. Swain,et al.  A randomized trial comparing wireless capsule endoscopy with push enteroscopy for the detection of small-bowel lesions. , 2000, Gastroenterology.

[12]  Ramesh Harjani,et al.  An ISM band CMOS integrated transceiver design for wireless telemetry system , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[13]  R Rajamani,et al.  Passive wireless MEMS microphones for biomedical applications. , 2005, Journal of biomechanical engineering.

[14]  Hooman Darabi,et al.  A fully integrated SOC for 802.11b in 0.18-μm CMOS , 2005 .

[15]  N. Boom,et al.  A 5.0mW 0dBm FSK transmitter for 315/433 MHz ISM applications in 0.25 /spl mu/m CMOS , 2004, Proceedings of the 30th European Solid-State Circuits Conference.

[16]  M. Sawan,et al.  Wireless Smart Implants Dedicated to Multichannel Monitoring and Microstimulation , 2005, The IEEE/ACS International Conference on Pervasive Services.

[17]  K. Sakui,et al.  A CMOS bandgap reference circuit with sub-1-V operation , 1999 .

[18]  Baohong Cheng,et al.  A single-chip dual-band direct-conversion IEEE 802.11a/b/g WLAN transceiver in 0.18-/spl mu/m CMOS , 2005, IEEE Journal of Solid-State Circuits.

[19]  R. D'Incà,et al.  Clinical relevance of small-bowel findings detected by wireless capsule endoscopy , 2005, Scandinavian journal of gastroenterology.

[20]  G. Iddan,et al.  Wireless capsule endoscopy , 2003, Gut.

[21]  Baoyong Chi,et al.  1GHz monolithic high spectrum purity fractional-N frequency synthesizer with a 3-b third-order delta-sigma modulator , 2004, Proceedings. 7th International Conference on Solid-State and Integrated Circuits Technology, 2004..

[22]  Reid R. Harrison,et al.  Micropower circuits for bidirectional wireless telemetry in neural recording applications , 2005, IEEE Transactions on Biomedical Engineering.

[23]  Robert G. Meyer,et al.  Analysis and Design of Analog Integrated Circuits , 1993 .

[24]  N. Weste,et al.  A 500 MHz CMOS anti-alias filter using feed-forward op-amps with local common-mode feedback , 2003 .

[25]  M.J. Deen,et al.  Low-voltage, low-power and low phase noise 2.4 GHz VCO for medical wireless telemetry , 2004, Canadian Conference on Electrical and Computer Engineering 2004 (IEEE Cat. No.04CH37513).

[26]  J. Chiu,et al.  A fully integrated SoC for 802.11b in 0.18 /spl mu/m CMOS , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[27]  Chun Zhang,et al.  A novel low power IC design for bi-directional digital wireless endoscopy capsule system , 2004, IEEE International Workshop on Biomedical Circuits and Systems, 2004..

[28]  P. Belafsky,et al.  Comparison Of Data Obtained from Sedated versus Unsedated Wireless Telemetry Capsule Placement: Does Sedation Affect the Results of Ambulatory 48‐Hour pH Testing? , 2005, The Laryngoscope.

[29]  Chorng-Kuang Wang,et al.  A 3.3-V CMOS wideband exponential control variable-gain-amplifier , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[30]  Guolin Li,et al.  A Low-Power Digital IC Design Inside the Wireless Endoscopic Capsule , 2006, IEEE Journal of Solid-State Circuits.

[31]  Ramesh Harjani,et al.  An IF stage design for an ASK-based wireless telemetry system , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[32]  Jong-Oh Park,et al.  Design and fabrication of a locomotive mechanism for capsule-type endoscopes using shape memory alloys (SMAs) , 2005 .

[33]  Barrie Gilbert,et al.  A precise four-quadrant multiplier with subnanosecond response , 1968, IEEE Solid-State Circuits Newsletter.

[34]  Byung-Seop Song,et al.  Design of bi-directional and multi-channel miniaturized telemetry module for wireless endoscopy , 2002, 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Proceedings (Cat. No.02EX578).

[35]  Wang Zhi-hua CMOS Implementation of RF PLL Frequency Synthesizer , 2004 .

[36]  G. Palmisano,et al.  A replica biasing for constant-gain CMOS open-loop amplifiers , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[37]  Mohamad Sawan,et al.  A fully integrated low-power BPSK demodulator for implantable medical devices , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[38]  Michiel Steyaert,et al.  Design techniques and implementation of an 8-bit 200-MS/s interpolating/averaging CMOS A/D converter , 2003 .

[39]  M. Chanca,et al.  A multimode 0.3-200-kb/s transceiver for the 433/868/915-MHz bands in 0.25-/spl mu/m CMOS , 2004, IEEE Journal of Solid-State Circuits.

[40]  Alan F. Murray,et al.  Data transmission for implantable microsystems using magnetic coupling , 2005 .