Effect of interfacial dislocation networks on the evolution of matrix dislocations in nickel-based superalloy

[1]  Hyung-Jun Chang,et al.  Micromechanics of primary creep in Ni base superalloys , 2018, International Journal of Plasticity.

[2]  Minsheng Huang,et al.  Hydrogen-enhanced interfacial damage in Ni-based single crystal superalloy , 2018 .

[3]  H. Gänser,et al.  A microstructural based creep model applied to alloy 718 , 2017, International Journal of Plasticity.

[4]  R. W. Neu,et al.  Crystal viscoplasticity model for the creep-fatigue interactions in single-crystal Ni-base superalloy CMSX-8 , 2018 .

[5]  Minsheng Huang,et al.  Quantitative study on interactions between interfacial misfit dislocation networks and matrix dislocations in Ni-based single crystal superalloys , 2017 .

[6]  J. Cormier,et al.  A tensorial thermodynamic framework to account for the γ' rafting in nickel-based single crystal superalloys , 2017 .

[7]  M. Zaiser,et al.  A continuum approach to combined γ/γ′ evolution and dislocation plasticity in Nickel-based superalloys , 2017 .

[8]  Y. Liu,et al.  A modification on Brook formula in calculating the misfit of Ni-based superalloys , 2017 .

[9]  Minsheng Huang,et al.  An extended 3D discrete-continuous model and its application on single- and bi-crystal micropillars , 2017 .

[10]  A. Hussein,et al.  The strength and dislocation microstructure evolution in superalloy microcrystals , 2017 .

[11]  Yong Liu,et al.  Effect of lattice misfit on the evolution of the dislocation structure in Ni-based single crystal superalloys during thermal exposure , 2016 .

[12]  Benoit Devincre,et al.  Consistent formulation for the Discrete-Continuous Model: Improving complex dislocation dynamics simulations , 2016 .

[13]  Yun-li Li,et al.  Molecular Dynamics Simulation of the Evolution of Interfacial Dislocation Network and Stress Distribution of a Ni-Based Single-Crystal Superalloy , 2016, Acta Metallurgica Sinica (English Letters).

[14]  H. Kim,et al.  An intermediate temperature creep model for Ni-based superalloys , 2016 .

[15]  Minsheng Huang,et al.  Coupled DDD–FEM modeling on the mechanical behavior of microlayered metallic multilayer film at elevated temperature , 2015 .

[16]  I. Steinbach,et al.  Primary combination of phase-field and discrete dislocation dynamics methods for investigating athermal plastic deformation in various realistic Ni-base single crystal superalloy microstructures , 2015 .

[17]  Minsheng Huang,et al.  Strengthening mechanisms of the nanolayered polycrystalline metallic multilayers assisted by twins , 2015 .

[18]  D. Raabe,et al.  Atom probe informed simulations of dislocation-precipitate interactions reveal the importance of local interface curvature , 2015 .

[19]  Yinan Cui,et al.  Quantitative investigations on dislocation based discrete-continuous model of crystal plasticity at submicron scale , 2015 .

[20]  Y. Liu,et al.  Creep behavior as dislocation climb over NiAl nanoprecipitates in ferritic alloy: The effects of interface stresses and temperature , 2015 .

[21]  Alexander Hartmaier,et al.  Influence of misfit stresses on dislocation glide in single crystal superalloys: A three-dimensional discrete dislocation dynamics study , 2015 .

[22]  Minsheng Huang,et al.  Modeling of abnormal mechanical properties of nickel-based single crystal superalloy by three-dimensional discrete dislocation dynamics , 2014 .

[23]  F. Roters,et al.  Interfacial dislocation motion and interactions in single-crystal superalloys , 2014 .

[24]  F. Feyel,et al.  Modelling crystal plasticity by 3D dislocation dynamics and the finite element method: The Discrete-Continuous Model revisited , 2014 .

[25]  Minsheng Huang,et al.  The key role of dislocation dissociation in the plastic behaviour of single crystal nickel-based superalloy with low stacking fault energy: Three-dimensional discrete dislocation dynamics modelling , 2013 .

[26]  Minsheng Huang,et al.  Modeling dislocation cutting the precipitate in nickel-based single crystal superalloy via the discrete dislocation dynamics with SISF dissociation scheme , 2013 .

[27]  Minsheng Huang,et al.  Atomistic modeling of the interaction between matrix dislocation and interfacial misfit dislocation networks in Ni-based single crystal superalloy , 2013 .

[28]  B. Viguier,et al.  Evolution of interfacial dislocation network during anisothermal high-temperature creep of a nickel-based superalloy , 2012 .

[29]  Liguo Zhao,et al.  Discrete dislocation dynamics modelling of mechanical deformation of nickel-based single crystal superalloys , 2012 .

[30]  Yunzhi Wang,et al.  Dislocation Decorrelation and Relationship to Deformation Microtwins during Creep of a Gamma' Precipitate Strengthened Ni-based Superalloy , 2011 .

[31]  Yuesheng Wang,et al.  Molecular dynamics simulation of the structural evolution of misfit dislocation networks at γ/γ′ phase interfaces in Ni-based superalloys , 2011 .

[32]  F. Feyel,et al.  Predicting size effects in nickel-base single crystal superalloys with the Discrete-Continuous Model , 2010 .

[33]  Benoit Devincre,et al.  Dislocation dynamics simulations of precipitation hardening in Ni-based superalloys with high γ′ volume fraction , 2009 .

[34]  Z. Zhuang,et al.  A multi-scale computational model of crystal plasticity at submicron-to-nanometer scales , 2009 .

[35]  Chong-yu Wang,et al.  Motion of misfit dislocation in an Ni/Ni3Al interface: a molecular dynamics simulations study , 2009 .

[36]  Tiedo Tinga,et al.  Cube slip and non-Schmid effects in single crystal Ni-base superalloys , 2009 .

[37]  Tiedo Tinga,et al.  Incorporating strain gradient effects in a multiscale constitutive framework for nickel-base superalloys , 2008 .

[38]  Y. Tomita,et al.  Discrete Dislocation Dynamics Study on Interaction between Prismatic Dislocation Loop and Interfacial Network Dislocations , 2008 .

[39]  T. Pollock,et al.  Interfacial Dislocation Networks and Creep in Directional Coarsened Ru-Containing Nickel-Base Single-Crystal Superalloys , 2008 .

[40]  J. Douin,et al.  Dissociated dislocations in confined plasticity , 2007 .

[41]  H. Zbib,et al.  Discrete dislocation dynamics simulation of cutting of γ′ precipitate and interfacial dislocation network in Ni-based superalloys , 2006 .

[42]  Christopher R. Weinberger,et al.  A non-singular continuum theory of dislocations , 2006 .

[43]  H. Harada,et al.  The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep , 2005 .

[44]  H. Harada,et al.  Deformation microstructures after low-cycle fatigue in a fourth-generation Ni-base SC superalloy TMS-138 , 2004 .

[45]  T. Kobayashi,et al.  Interfacial dislocation networks strengthening a fourth-generation single-crystal TMS-138 superalloy , 2002 .

[46]  Hussein M. Zbib,et al.  A multiscale model of plasticity , 2002 .

[47]  Ladislas P. Kubin,et al.  Homogenization method for a discrete-continuum simulation of dislocation dynamics , 2001 .

[48]  D. M. Knowles,et al.  Constitutive modelling of anisotropic creep deformation in single crystal blade alloys SRR99 and CMSX-4 , 2001 .

[49]  H. Zbib,et al.  A 3D DISLOCATION SIMULATION MODEL FOR PLASTIC DEFORMATION AND INSTABILITIES IN SINGLE CRYSTALS , 2000 .

[50]  Susil K. Putatunda,et al.  Tensile behavior of a new single crystal nickel-based superalloy (CMSX-4) at room and elevated temperatures , 1994 .

[51]  A. J. E. Foreman,et al.  The bowing of a dislocation segment , 1967 .