Binary Accelerated Particle Swarm Algorithm (BAPSA) for discrete optimization problems

[1]  Sanyang Liu,et al.  Particle swarm optimization with chaotic opposition-based population initialization and stochastic search technique , 2012 .

[2]  Marie-Ange Manier,et al.  A genetic algorithm with tabu search procedure for flexible job shop scheduling with transportation constraints and bounded processing times , 2012, Comput. Oper. Res..

[3]  Ghorbanali Moslemipour,et al.  A review of intelligent approaches for designing dynamic and robust layouts in flexible manufacturing systems , 2012 .

[4]  Philippe Galinier,et al.  A tabu search algorithm for the covering design problem , 2011, J. Heuristics.

[5]  Labed Said,et al.  A Modified Hybrid Particle Swarm Optimization Algorithm for Multidimensional Knapsack Problem , 2011 .

[6]  Salim Chikhi,et al.  BPSO Algorithms for Knapsack Problem , 2011, WiMo/CoNeCo.

[7]  José Rui Figueira,et al.  Using the idea of expanded core for the exact solution of bi-objective multi-dimensional knapsack problems , 2011, J. Glob. Optim..

[8]  Jin-Ho Kim,et al.  A Novel Binary Ant Colony Optimization: Application to the Unit Commitment Problem of Power Systems , 2011 .

[9]  Abdel Lisser,et al.  Knapsack problem with probability constraints , 2011, J. Glob. Optim..

[10]  José Rui Figueira,et al.  Identifying preferred solutions to Multi-Objective Binary Optimisation problems, with an application to the Multi-Objective Knapsack Problem , 2011, J. Glob. Optim..

[11]  He Li,et al.  Permutation Algorithm with Simulated Annealing for Laser Antimissile Problem , 2010 .

[12]  Maria Grazia Speranza,et al.  Kernel search: A general heuristic for the multi-dimensional knapsack problem , 2010, Comput. Oper. Res..

[13]  Henry C. W. Lau,et al.  Application of Genetic Algorithms to Solve the Multidepot Vehicle Routing Problem , 2010, IEEE Transactions on Automation Science and Engineering.

[14]  Manju Agarwal,et al.  Ant colony approach to constrained redundancy optimization in binary systems , 2010 .

[15]  Mingyuan Chen,et al.  A hybrid genetic algorithm for flowshop lot streaming with setups and variable sublots , 2010 .

[16]  Weihang Zhu,et al.  SIMD tabu search for the quadratic assignment problem with graphics hardware acceleration , 2010 .

[17]  Ahmad Moradi,et al.  An effective hybrid PSO-based algorithm for planning UMTS terrestrial access networks , 2010 .

[18]  Kamran Shahanaghi,et al.  Scheduling flowshops with condition-based maintenance constraint to minimize expected makespan , 2010 .

[19]  Fred W. Glover,et al.  A cooperative parallel tabu search algorithm for the quadratic assignment problem , 2009, Eur. J. Oper. Res..

[20]  Fred W. Glover,et al.  Multistart Tabu Search and Diversification Strategies for the Quadratic Assignment Problem , 2009, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[21]  Mingyuan Chen,et al.  A simulated annealing algorithm for dynamic system reconfiguration and production planning in cellular manufacturing , 2009, Int. J. Manuf. Technol. Manag..

[22]  Massimo Paolucci,et al.  A new discrete particle swarm optimization approach for the single-machine total weighted tardiness scheduling problem with sequence-dependent setup times , 2009, Eur. J. Oper. Res..

[23]  A. Tamilarasi,et al.  Hybridizing tabu search with ant colony optimization for solving job shop scheduling problems , 2009 .

[24]  Jun Zhang,et al.  Adaptive Particle Swarm Optimization , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[25]  Anna Kucerová,et al.  Improvements of real coded genetic algorithms based on differential operators preventing premature convergence , 2004, ArXiv.

[26]  Li Mao-lin,et al.  Hyper-mutation antibody clone algorithms for TSP , 2009 .

[27]  M. Marchese,et al.  An ant colony optimization method for generalized TSP problem , 2008 .

[28]  Frank Werner,et al.  Simulated annealing and genetic algorithms for minimizing mean flow time in an open shop , 2008, Math. Comput. Model..

[29]  Mehmet Fatih Tasgetiren,et al.  A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem , 2008, Comput. Oper. Res..

[30]  Min Kong,et al.  A new ant colony optimization algorithm for the multidimensional Knapsack problem , 2008, Comput. Oper. Res..

[31]  Rumen Andonov,et al.  A dynamic programming based reduction procedure for the multidimensional 0-1 knapsack problem , 2008, Eur. J. Oper. Res..

[32]  Xingsheng Gu,et al.  A novel particle swarm optimization algorithm for permutation flow-shop scheduling to minimize makespan ☆ , 2008 .

[33]  Der-Rong Din,et al.  Heuristic and Simulated Annealing Algorithms for Wireless ATM Backbone Network Design Problem , 2008, J. Inf. Sci. Eng..

[34]  Zne-Jung Lee,et al.  Genetic algorithm with ant colony optimization (GA-ACO) for multiple sequence alignment , 2008, Appl. Soft Comput..

[35]  T. Senjyu,et al.  Memory-Bounded Ant Colony Optimization With Dynamic Programming and $A^{\ast}$ Local Search for Generator Planning , 2007, IEEE Transactions on Power Systems.

[36]  Pin Luarn,et al.  A discrete version of particle swarm optimization for flowshop scheduling problems , 2007, Comput. Oper. Res..

[37]  Yanchun Liang,et al.  Particle swarm optimization-based algorithms for TSP and generalized TSP , 2007, Inf. Process. Lett..

[38]  Haozhong Cheng,et al.  New discrete method for particle swarm optimization and its application in transmission network expansion planning , 2007 .

[39]  Lawrence V. Snyder,et al.  A random-key genetic algorithm for the generalized traveling salesman problem , 2006, Eur. J. Oper. Res..

[40]  Li Zhang,et al.  Genetic Algorithm Based on the Orthogonal Design for Multidimensional Knapsack Problems , 2006, ICNC.

[41]  Min Kong,et al.  Apply the Particle Swarm Optimization to the Multidimensional Knapsack Problem , 2006, ICAISC.

[42]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[43]  Andreas Drexl,et al.  A simulated annealing approach to the multiconstraint zero-one knapsack problem , 1988, Computing.

[44]  B. Al-kazemi,et al.  Discrete Multi-Phase Particle Swarm Optimization , 2005 .

[45]  Stefka Fidanova,et al.  Ant Colony Optimization for Multiple Knapsack Problem and Model Bias , 2004, NAA.

[46]  José Neves,et al.  The fully informed particle swarm: simpler, maybe better , 2004, IEEE Transactions on Evolutionary Computation.

[47]  Maria Grazia Speranza,et al.  A multidimensional knapsack model for asset-backed securitization , 2002, J. Oper. Res. Soc..

[48]  Ashish Tiwari,et al.  A greedy genetic algorithm for the quadratic assignment problem , 2000, Comput. Oper. Res..

[49]  Luca Maria Gambardella,et al.  Ant Algorithms for Discrete Optimization , 1999, Artificial Life.

[50]  John E. Beasley,et al.  A Genetic Algorithm for the Multidimensional Knapsack Problem , 1998, J. Heuristics.

[51]  Jacques Teghem,et al.  Two-phases Method and Branch and Bound Procedures to Solve the Bi–objective Knapsack Problem , 1998, J. Glob. Optim..

[52]  Richard E. Neapolitan,et al.  Foundations of algorithms using C++ pseudocode (2nd ed.) , 1997 .

[53]  Russell C. Eberhart,et al.  A discrete binary version of the particle swarm algorithm , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[54]  Yee Leung,et al.  Degree of population diversity - a perspective on premature convergence in genetic algorithms and its Markov chain analysis , 1997, IEEE Trans. Neural Networks.

[55]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[56]  Carlos Cotta,et al.  A Hybrid Genetic Algorithm for the 0-1 Multiple Knapsack Problem , 1997, ICANNGA.

[57]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[58]  Martin W. P. Savelsbergh,et al.  MINTO, a mixed INTeger optimizer , 1994, Oper. Res. Lett..

[59]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[60]  Fred W. Glover,et al.  The general employee scheduling problem. An integration of MS and AI , 1986, Comput. Oper. Res..

[61]  Ronald L. Rivest,et al.  A Knapsack Type Public Key Cryptosystem Based On Arithmetic in Finite Fields , 1984, CRYPTO.

[62]  Ellis L. Johnson,et al.  Solving Large-Scale Zero-One Linear Programming Problems , 1983, Oper. Res..

[63]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[64]  Wei Shih,et al.  A Branch and Bound Method for the Multiconstraint Zero-One Knapsack Problem , 1979 .

[65]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[66]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[67]  J. S. Dowker,et al.  Fundamentals of Physics , 1970, Nature.

[68]  S. Senju,et al.  An Approach to Linear Programming with 0--1 Variables , 1968 .

[69]  Ralph E. Gomory,et al.  The Theory and Computation of Knapsack Functions , 1966, Oper. Res..