Symplectic exponentially-fitted four-stage Runge–Kutta methods of the Gauss type
暂无分享,去创建一个
[1] G. Berghe,et al. Symplectic Exponentially-Fitted Modified Runge-Kutta Methods of the Gauss Type: Revisited , 2011 .
[2] Theodore E. Simos,et al. A Modified Runge-Kutta Method with Phase-lag of Order Infinity for the Numerical Solution of the Schrödinger Equation and Related Problems , 2001, Comput. Chem..
[3] S. Yau. Mathematics and its applications , 2002 .
[4] G. Vanden Berghe,et al. Exponential fitted Runge--Kutta methods of collocation type: fixed or variable knot points? , 2003 .
[5] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[6] T. E. Simos,et al. An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions , 1998 .
[7] Higinio Ramos,et al. Dissipative Chebyshev exponential-fitted methods for numerical solution of second-order differential equations , 2003 .
[8] H. De Meyer,et al. Exponentially-fitted explicit Runge–Kutta methods , 1999 .
[9] Manuel Calvo,et al. Sixth-order symmetric and symplectic exponentially fitted modified Runge-Kutta methods of Gauss type , 2008, Comput. Phys. Commun..
[10] T. E. Simos,et al. Exponentially fitted symplectic integrator. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[11] D. Hollevoet,et al. Three‐Stage Two‐Parameter Symplectic, Symmetric Exponentially‐Fitted Runge‐Kutta Methods of Gauss Type , 2010 .
[12] H. De Meyer,et al. Exponentially fitted Runge-Kutta methods , 2000 .
[13] Jesús Vigo-Aguiar,et al. AN ADAPTED SYMPLECTIC INTEGRATOR FOR HAMILTONIAN PROBLEMS , 2001 .
[14] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[15] K. Ozawa. A functional fitting Runge-Kutta-Nyström method with variable coefficients , 2002 .
[16] D. G. Bettis. Runge-Kutta algorithms for oscillatory problems , 1979 .
[17] Manuel Calvo,et al. Structure preservation of exponentially fitted Runge-Kutta methods , 2008 .
[18] T. E. Simos,et al. Controlling the error growth in long–term numerical integration of perturbed oscillations in one or several frequencies , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[19] Kazufumi Ozawa,et al. A functional fitting Runge-Kutta method with variable coefficients , 2001 .
[20] G. J. Cooper. Stability of Runge-Kutta Methods for Trajectory Problems , 1987 .
[21] Hans Van de Vyver. A fourth-order symplectic exponentially fitted integrator , 2006, Comput. Phys. Commun..
[22] Manuel Calvo,et al. Sixth-order symmetric and symplectic exponentially fitted Runge-Kutta methods of the Gauss type , 2009 .
[23] J. M. Franco. Runge-Kutta methods adapted to the numerical integration of oscillatory problems , 2004 .
[24] E. Hairer,et al. Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .
[25] J. M. Sanz-Serna,et al. Numerical Hamiltonian Problems , 1994 .
[26] J. M. Sanz-Serna,et al. Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.
[27] G. Berghe,et al. Fourth-order symplectic exponentially-fitted modified Runge-Kutta methods of the Gauss type: a review , 2010 .