Chemical gradients in the Milky Way from the RAVE data

Aims. We provide new constraints on the chemo-dynamical models of the Milky Way by measuring the radial and vertical chemical gradients for the elements Mg, Al, Si, Ti, and Fe in the Galactic disc and the gradient variations as a function of the distance from the Galactic plane (Z). Methods. We selected a sample of giant stars from the RAVE database using the gravity criterium 1.7 < log g< 2.8. We created a RAVE mock sample with the Galaxia code based on the Besancon model and selected a corresponding mock sample to compare the model with the observed data. We measured the radial gradients and the vertical gradients as a function of the distance from the Galactic plane Z to study their variation across the Galactic disc. Results. The RAVE sample exhibits a negative radial gradient of d[Fe/H]/dR = −0.054 dex kpc −1 close to the Galactic plane (|Z| < 0.4 kpc) that becomes flatter for larger |Z|. Other elements follow the same trend although with some variations from element to element. The mock sample has radial gradients in fair agreement with the observed data. The variation of the gradients with Z shows that the Fe radial gradient of the RAVE sample has little change in the range |Z| 0.6 kpc and then flattens. The iron vertical gradient of the RAVE sample is slightly negative close to the Galactic plane and steepens with |Z|. The mock sample exhibits an iron vertical gradient that is always steeper than the RAVE sample. The mock sample also shows an excess of metal-poor stars in the [Fe/H] distributions with respect to the observed data. These discrepancies can be reduced by decreasing the number of thick disc stars and increasing their average metallicity in the Besancon model.

[1]  P. François,et al.  Galactic chemical evolution: abundance gradients of individual elements , 1989 .

[2]  Walter Dehnen,et al.  Mass models of the Milky Way , 1996 .

[3]  C. Chiappini,et al.  The Chemical Evolution of the Galaxy: The Two-Infall Model , 1996, astro-ph/9609199.

[4]  C. Chiappini,et al.  Abundance Gradients and the Formation of the Milky Way , 2001, astro-ph/0102134.

[5]  J. Binney Radial mixing in galactic discs , 2002, astro-ph/0203510.

[6]  Vertical distribution of Galactic disk stars - I. Kinematics and metallicity , 2002, astro-ph/0210628.

[7]  Nathan D. Miller,et al.  Metallicities of Old Open Clusters , 2002 .

[8]  Using Cepheids to determine the galactic abundance gradient I. The solar neighbourhood , 2001, astro-ph/0112525.

[9]  A. Robin,et al.  A synthetic view on structure and evolution of the Milky Way , 2003 .

[10]  The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properti , 2004, astro-ph/0405198.

[11]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[12]  B. Carney,et al.  Elemental Abundance Ratios in Stars of the Outer Galactic Disk. III. Cepheids , 2005, astro-ph/0512348.

[13]  S. Udry,et al.  Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data: Revisiting the concept of superclusters , 2004, astro-ph/0409579.

[14]  U. Munari,et al.  The radial velocity experiment (RAVE): First data release , 2006 .

[15]  H. W. Zhang,et al.  Na, Mg and Al abundances as a population discriminant for nearby metal-poor stars , 2006 .

[16]  B. Yanny,et al.  A Spectroscopic Study of the Ancient Milky Way: F- and G-Type Stars in the Third Data Release of the Sloan Digital Sky Survey , 2005, astro-ph/0509812.

[17]  The Distribution of the Elements in the Galactic Disk , 2006 .

[18]  Abundance gradients in the Milky Way for α elements, iron peak elements, barium, lanthanum, and europium , 2006, astro-ph/0609813.

[19]  P. Frinchaboy,et al.  Old open clusters in the outer Galactic disk , 2007, 0709.2126.

[20]  B. Gibson,et al.  Galactic kinematics with RAVE data - I. The distribution of stars towards the Galactic poles , 2008, 0801.2120.

[21]  Mamoru Doi,et al.  The Milky Way Tomography with SDSS. II. Stellar Metallicity , 2008, 0804.3850.

[22]  G. Stinson,et al.  Riding the Spiral Waves: Implications of Stellar Migration for the Properties of Galactic Disks , 2008, 0808.0206.

[23]  C. D. Laney,et al.  Galactic abundance gradients from Cepheids : On the iron abundance gradient around 10-12 kpc , 2008, 0810.0205.

[24]  U. Munari,et al.  THE RADIAL VELOCITY EXPERIMENT (RAVE): SECOND DATA RELEASE , 2008, 0806.0546.

[25]  D. O. Astronomy,et al.  Open clusters as key tracers of Galactic chemical evolution. III. Element abundances in Berkeley 20 , 2008, 0807.2313.

[26]  N. V. Kharchenko,et al.  PPM-Extended (PPMX) – a catalogue of positions and proper motions , 2008, 0806.1009.

[27]  David Schlegel,et al.  The Milky Way Tomography with SDSS. I. Stellar Number Density Distribution , 2005, astro-ph/0510520.

[28]  F. Matteucci,et al.  The origin of abundance gradients in the Milky Way: the predictions of different models , 2008, 0811.3505.

[29]  James Binney,et al.  Distribution functions for the Milky Way , 2009, 0910.1512.

[30]  J. Binney,et al.  Origin and structure of the Galactic disc(s) , 2009, 0907.1899.

[31]  B. Gibson,et al.  The origin of the light distribution in spiral galaxies , 2009, 0905.4579.

[32]  James Binney,et al.  Chemical evolution with radial mixing , 2008, 0809.3006.

[33]  B. Gibson,et al.  Distance determination for RAVE stars using stellar models , 2010, 1007.4411.

[34]  B. Gibson,et al.  Distance determination for RAVE stars using stellar models , 2010, Astronomy &amp; Astrophysics.

[35]  B. Gibson,et al.  Detection of a radial velocity gradient in the extended local disc with RAVE , 2010, Monthly Notices of the Royal Astronomical Society.

[36]  An absolutely calibrated T eff scale from the infrared flux method. Dwarfs and subgiants , 2010 .

[37]  E. Schilbach,et al.  THE PPMXL CATALOG OF POSITIONS AND PROPER MOTIONS ON THE ICRS. COMBINING USNO-B1.0 AND THE TWO MICRON ALL SKY SURVEY (2MASS) , 2010, 1003.5852.

[38]  E. Rossetti,et al.  Chemical abundance analysis of the open clusters Cr 110, NGC 2099 (M 37), NGC 2420, NGC 7789, and M 67 (NGC 2682) , 2009, 0910.0723.

[39]  Naohito Nakasato,et al.  CHEMODYNAMICAL SIMULATIONS OF THE MILKY WAY GALAXY , 2008, Proceedings of the International Astronomical Union.

[40]  Michelle L. Wilson,et al.  Testing formation mechanisms of the Milky Way's thick disc with RAVE , 2010, 1009.2052.

[41]  The Distribution Of The Elements In The Galactic Disk. III. A Reconsideration Of Cepheids From L=30 Degrees To 250 Degrees , 2011 .

[42]  Kathryn V. Johnston,et al.  GALAXIA: A CODE TO GENERATE A SYNTHETIC SURVEY OF THE MILKY WAY , 2011, 1101.3561.

[43]  O. Bienaymé,et al.  Probing the Galactic thick disc vertical properties and interfaces , 2011 .

[44]  L. Casagrande,et al.  New constraints on the chemical evolution of the solar neighbourhood and galactic disc(s) - improved astrophysical parameters for the Geneva-Copenhagen Survey , 2011, 1103.4651.

[45]  U. Munari,et al.  THE RAVE CATALOG OF STELLAR ELEMENTAL ABUNDANCES: FIRST DATA RELEASE , 2011, 1109.5670.

[46]  A. Bijaoui,et al.  Automatic stellar spectra parameterisation in the IR Ca ii triplet region , 2011, 1109.6237.

[47]  I. Minchev,et al.  Radial migration in galactic disks caused by resonance overlap of multiple patterns: Self-consistent simulations , 2010, 1006.0484.

[48]  G. Seabroke,et al.  Local stellar kinematics from RAVE data - II. Radial metallicity gradient , 2011, 1109.6519.

[49]  B. Gibson,et al.  OBSERVATIONAL PROPERTIES OF THE METAL-POOR THICK DISK OF THE MILKY WAY AND INSIGHTS INTO ITS ORIGINS , 2011, 1105.3691.

[50]  A. Bijaoui,et al.  A spectroscopic survey of thick disc stars outside the solar neighbourhood , 2011, 1110.5221.

[51]  THE DISTRIBUTION OF THE ELEMENTS IN THE GALACTIC DISK. III. A RECONSIDERATION OF CEPHEIDS FROM l = 30° TO 250° , 2011, 1108.1947.

[52]  U. Munari,et al.  Distance determination for RAVE stars using stellar models - III. The nature of the RAVE survey and Milky Way chemistry , 2011 .

[53]  B. Gibson,et al.  Metallicity gradients in disks - Do galaxies form inside-out? , 2012, 1201.6359.

[54]  B. Gibson,et al.  Thick disk kinematics from RAVE and the solar motion , 2012, 1209.0460.

[55]  T. Beers,et al.  THE METALLICITY DISTRIBUTION FUNCTIONS OF SEGUE G AND K DWARFS: CONSTRAINTS FOR DISK CHEMICAL EVOLUTION AND FORMATION , 2011, 1112.2214.

[56]  B. Carney,et al.  ELEMENTAL ABUNDANCE RATIOS IN STARS OF THE OUTER GALACTIC DISK. IV. A NEW SAMPLE OF OPEN CLUSTERS , 2012, 1206.6931.

[57]  Judy Y. Cheng,et al.  METALLICITY GRADIENTS IN THE MILKY WAY DISK AS OBSERVED BY THE SEGUE SURVEY , 2011, 1110.5933.

[58]  E. Starkenburg,et al.  GALACTIC ARCHAEOLOGY: NEAR-FIELD COSMOLOGY AND THE FORMATION OF THE MILKY WAY , 2012 .

[59]  G. Seabroke,et al.  Local stellar kinematics from RAVE data – III. Radial and vertical metallicity gradients based on red clump stars , 2012, 1201.3065.

[60]  K. Carrell,et al.  METALLICITY GRADIENTS OF THICK DISK DWARF STARS , 2012, 1210.2824.

[61]  C. Chiappini,et al.  Chemodynamical evolution of the Milky Way disk - I. The solar vicinity , 2012, 1208.1506.

[62]  Mpia,et al.  Kinematics of Stellar Populations with RAVE data , 2011, 1103.4631.

[63]  B. Gibson,et al.  EXPLORING THE MORPHOLOGY OF RAVE STELLAR SPECTRA , 2012, 1204.6502.

[64]  B. Gibson,et al.  Constraining sub-grid physics with high-redshift spatially-resolved metallicity distributions , 2013, 1304.3020.

[65]  B. Gibson,et al.  The relation between chemical abundances and kinematics of the Galactic disc with RAVE , 2013, Astronomy &amp; Astrophysics.

[66]  B. Gibson,et al.  The Wobbly Galaxy : kinematics north and south with RAVE red-clump giants , 2013, 1302.2468.