On the matrix equation Ax = λBx

[1]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[2]  Adi Ben-Israel,et al.  On Iterative Computation of Generalized Inverses and Associated Projections , 1966 .

[3]  Adi Ben-Israel,et al.  An iterative method for computing the generalized inverse of an arbitrary matrix , 1965 .

[4]  L. D. Pyle,et al.  Generalized Inverse Computations Using the Gradient Projection Method , 1964, JACM.

[5]  R. E. Cline Representations for the Generalized Inverse of a Partitioned Matrix , 1964 .

[6]  J. Chipman,et al.  Projections, generalized inverses, and quadratic forms , 1964 .

[7]  Adi Ben-Israel,et al.  An Elimination Method for Computing the Generalized Inverse of an Arbitrary Complex Matrix , 1963, JACM.

[8]  A. Charnes,et al.  Contributions to the Theory of Generalized Inverses , 1963 .

[9]  C. Desoer,et al.  A Note on Pseudoinverses , 1963 .

[10]  J. Boot,et al.  The Computation of the Generalized Inverse of singular or Rectangular Matrices , 1963 .

[11]  M. Drazin Pseudo-Inverses in Associative Rings and Semigroups , 1958 .

[12]  M. Hestenes Inversion of Matrices by Biorthogonalization and Related Results , 1958 .

[13]  R. Rado,et al.  Note on generalized inverses of matrices , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  R. Penrose A generalized inverse for matrices , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[15]  Henry E. Fettis,et al.  Note on the matrix equation Ax = λBx , 1965, Comput. J..

[16]  T. Greville The Pseudoinverse of a Rectangular or Singular Matrix and Its Application to the Solution of Systems of Linear Equations , 1959 .

[17]  A. Bjerhammar,et al.  A generalized matrix algebra , 1958 .