On Dual Relationships of Secrecy Codes

We investigate properties of finite blocklength codes and their duals when used for coset coding over the binary erasure wiretap channel (BEWC). We identify sufficient conditions, related to the ranks of sub-matrices of a generator matrix that codes may satisfy to achieve the maximum equivocation among all codes with given blocklength and dimension, irrespective of the eavesdropper's channel erasure probability. We point out that binary maximum distance separable (MDS) codes are optimal for secrecy and we also show that simplex codes (and Hamming codes) have higher equivocation than families of codes with a single repeated column in the generator matrix (parity-check matrix). We conjecture that simplex and Hamming codes are optimal when used as the base linear code in a coset coding scheme for secrecy over the BEWC.

[1]  Lawrence H. Ozarow,et al.  Wire-tap channel II , 1984, AT&T Bell Laboratories Technical Journal.

[2]  T. Moon Error Correction Coding: Mathematical Methods and Algorithms , 2005 .

[3]  A. Robert Calderbank,et al.  Applications of LDPC Codes to the Wiretap Channel , 2004, IEEE Transactions on Information Theory.

[4]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[5]  Ke Zhang,et al.  Best binary equivocation code construction for syndrome coding , 2014, IET Commun..

[6]  Andrew Thangaraj,et al.  Error-Control Coding for Physical-Layer Secrecy , 2015, Proceedings of the IEEE.

[7]  Matthieu R. Bloch,et al.  Coding for Secrecy: An Overview of Error-Control Coding Techniques for Physical-Layer Security , 2013, IEEE Signal Processing Magazine.

[8]  Martin E. Hellman,et al.  The Gaussian wire-tap channel , 1978, IEEE Trans. Inf. Theory.

[9]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.

[10]  Marco Gomes,et al.  Analysis of short blocklength codes for secrecy , 2018, EURASIP J. Wirel. Commun. Netw..

[11]  Matthieu R. Bloch,et al.  Physical-Layer Security: From Information Theory to Security Engineering , 2011 .

[12]  Marco Gomes,et al.  Interleaved Coding for Secrecy with a Hidden Key , 2015, 2015 IEEE Globecom Workshops (GC Wkshps).

[13]  Mohammed Zaki Ahmed,et al.  Secrecy coding for the wiretap channel using best known linear codes , 2013, Global Information Infrastructure Symposium - GIIS 2013.

[14]  A. Ashikhmin Generalized Hamming Weights for &-Linear Codes , 2015 .

[15]  Willie K. Harrison,et al.  Quantifying equivocation for finite blocklength wiretap codes , 2017, 2017 IEEE International Conference on Communications (ICC).