Optical Manipulation of Micro- and Nanoobjects Based on Structured Mesoscale Particles: a Brief Review

[1]  O. Minin,et al.  Dielectric particle-based strategy to design a new self-bending subwavelength structured light beams , 2021 .

[2]  Jie Lin,et al.  Photonic nanojet beam shaping by illumination polarization engineering , 2020 .

[3]  Hongbao Xin,et al.  Optical Fiber Tweezers: A Versatile Tool for Optical Trapping and Manipulation , 2020, Micromachines.

[4]  Guoqiang Gu,et al.  Twin Photonic Hooks Generated by Twin-Ellipse Microcylinder , 2020, IEEE Photonics Journal.

[5]  Weiguo Liu,et al.  Investigation on Super-Resolution Focusing Performance of a TE-Polarized Nanoslit-Based Two-Dimensional Lens , 2019, Nanomaterials.

[6]  Zengbo Wang,et al.  High order Fano resonances and giant magnetic fields in dielectric microspheres , 2019, Scientific Reports.

[7]  Ping Gao,et al.  Tunable Optical Hooks in the Visible Band Based on Ultra‐Thin Metalenses , 2019, Annalen der Physik.

[8]  Jinlong Zhu,et al.  All-dielectric concentration of electromagnetic fields at the nanoscale: the role of photonic nanojets , 2019, Nanoscale advances.

[9]  Qiang Wu,et al.  Photonic hooks from Janus microcylinders. , 2019, Optics express.

[10]  Guoqiang Gu,et al.  Photonic hook generated by twin-ellipse microcylinder , 2019, 1910.13146.

[11]  Alina Karabchevsky,et al.  Optical vacuum cleaner by optomechanical manipulation of nanoparticles using nanostructured mesoscale dielectric cuboid , 2019, Scientific Reports.

[12]  Igor V. Minin,et al.  Acoustical hooks: A new subwavelength self-bending beam , 2019, Results in Physics.

[13]  D. Kotsifaki,et al.  Plasmonic optical tweezers based on nanostructures: fundamentals, advances and prospects , 2019, Nanophotonics.

[14]  Yinghui Cao,et al.  Deep Subwavelength-Scale Light Focusing and Confinement in Nanohole-Structured Mesoscale Dielectric Spheres , 2019, Nanomaterials.

[15]  Georgios Veronis,et al.  Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm. , 2019, Optics express.

[16]  J. Xia,et al.  Switchable Photonic Nanojet by Electro-Switching Nematic Liquid Crystals , 2019, Nanomaterials.

[17]  Alexander A. Zemlyanov,et al.  Comparative Analysis of Key Parameters of Photonic Nanojets from Axisymmetric Nonspherical Microparticles , 2018, Atmospheric and Oceanic Optics.

[18]  M. Hong,et al.  Dynamically tunable multi-lobe laser generation via multifocal curved beam. , 2018, Optics express.

[19]  J. Sáenz,et al.  Living Nanospear for Near-Field Optical Probing. , 2018, ACS nano.

[20]  I. V. Minin,et al.  Experimental observation of a photonic hook , 2018, Applied Physics Letters.

[21]  Igor V. Minin,et al.  Photonic Hook Plasmons: A New Curved Surface Wave , 2018, Annalen der Physik.

[22]  Y. Geints,et al.  Metalens optical 3D-trapping and manipulating of nanoparticles , 2018, Journal of Optics.

[23]  J. Fontaine,et al.  Ultra-narrow photonic nanojets through a glass cuboid embedded in a dielectric cylinder. , 2018, Optics express.

[24]  S. Sukhov,et al.  ‘Photonic Hook’ based optomechanical nanoparticle manipulator , 2018, Scientific Reports.

[25]  Zengbo Wang,et al.  Photonic hook: a new curved light beam. , 2017, Optics letters.

[26]  D. Jaque,et al.  Optical trapping for biosensing: materials and applications. , 2017, Journal of materials chemistry. B.

[27]  Igor V. Minin,et al.  Focusing behavior of 2-dimensional plasmonic conical zone plate , 2017 .

[28]  Zengbo Wang,et al.  Refractive index less than two: photonic nanojets yesterday, today and tomorrow [Invited] , 2017 .

[29]  Cheng-Wei Qiu,et al.  Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects , 2017, Light: Science & Applications.

[30]  Igor V. Minin,et al.  Ultra-sharp nanofocusing of graded index photonic crystal-based lenses perforated with optimized single defect , 2016 .

[31]  E. Brasselet Optomechanical tomography , 2016, Nature Physics.

[32]  Miguel Beruete,et al.  Subwavelength, standing-wave optical trap based on photonic jets , 2016 .

[33]  Hongbao Xin,et al.  Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet , 2016, Light: Science & Applications.

[34]  Yuchao Li,et al.  Trapping and Detection of Nanoparticles and Cells Using a Parallel Photonic Nanojet Array. , 2016, ACS nano.

[35]  Deyuan Shen,et al.  Trapping and manipulating nanoparticles in photonic nanojets. , 2016, Optics letters.

[36]  M. Bhattacharya,et al.  Optomechanics based on angular momentum exchange between light and matter , 2015, 1512.08989.

[37]  Igor V. Minin,et al.  Microcubes aided photonic jet scalpel tips for potential use in ultraprecise laser surgery , 2015, 2015 International Conference on Biomedical Engineering and Computational Technologies (SIBIRCON).

[38]  Igor V. Minin,et al.  Diffractive Optics and Nanophotonics: Resolution Below the Diffraction Limit , 2015 .

[39]  A. Neves Photonic Nanojets in Optical Tweezers , 2015, 1502.01315.

[40]  O. Minin,et al.  3D dif fractive lenses to overcome the 3D Abbe subwavelength dif fraction limit , 2014 .

[41]  Lei Jin,et al.  Flat lenses constructed by graded negative index-based photonic crystals with tuned configurations , 2013 .

[42]  É. Akmansoy,et al.  Design and experimental evidence of a flat graded-index photonic crystal lens , 2013 .

[43]  O. Brzobohatý,et al.  Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’ , 2013, Nature Photonics.

[44]  Yoshio Otani,et al.  Removal of Nanoparticles from Gas Streams by Fibrous Filters: A Review , 2013 .

[45]  Aristide Dogariu,et al.  Optically induced 'negative forces' , 2012, Nature Photonics.

[46]  A Dogariu,et al.  Negative nonconservative forces: optical "tractor beams" for arbitrary objects. , 2011, Physical review letters.

[47]  A. Kildishev,et al.  Controlling the wave focal structure of metallic nanoslit lenses with liquid crystals , 2011 .

[48]  David Erickson,et al.  Nanomanipulation using near field photonics. , 2011, Lab on a chip.

[49]  Yu. E. Geints,et al.  Control over parameters of photonic nanojets of dielectric microspheres , 2010 .

[50]  Kuan-Ren Chen,et al.  Focusing of light beyond the diffraction limit of half the wavelength. , 2010, Optics letters.

[51]  I. V. Minin,et al.  Focusing properties of two types of diffractive photonic crystal lens , 2008, Optical Memory and Neural Networks.

[52]  D. Erni,et al.  Optical forces on metallic nanoparticles induced by a photonic nanojet. , 2008, Optics express.

[53]  Linfang Shen,et al.  Superlens formed by a one-dimensional dielectric photonic crystal , 2008 .

[54]  A. Petosa,et al.  FDTD Analysis of a Flat Diffractive Optics with Sub-Reyleigh Limit Resolution in MM/THz Waveband , 2006, 2006 Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics.

[55]  E. Stelzer Light microscopy: Beyond the diffraction limit? , 2002, Nature.

[56]  A. A. Zemlyanov,et al.  Comparative Analysis of Key Parameters of Photonic Nanojets from Axisymmetric Nonspherical Microparticles , 2019, Atmospheric and Oceanic Optics.

[57]  K. Dholakia,et al.  Optical hooks , 2019, Nature Photonics.

[58]  S. Sukhov,et al.  Low-contrast photonic hook manipulator for cellular differentiation , 2018 .

[59]  S. Majumder,et al.  24 T . 1 : Photonic nanojet : generation , manipulation and applications , 2018 .

[60]  Halina Rubinsztein-Dunlop,et al.  Roadmap on structured light , 2016 .

[61]  Oleg Minin,et al.  3D diffractive lenses to overcome the 3D Abbe subwavelength diffraction limit , 2014 .

[62]  A. Taflove,et al.  Photonic nanojets , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[63]  Peter Lebedew,et al.  Untersuchungen über die Druckkräfte des Lichtes , 1901 .