Mathematical Concepts of Data Assimilation

Environmental systems can be realistically described by mathematical and numerical models of the system dynamics. These models can be used to predict the future behaviour of the system, provided that the initial states of the system are known. Complete data defining all of the states of a system at a specific time are, however, rarely available. Moreover, both the models and the available initial data contain inaccuracies and random noise that can lead to significant differences between the predicted states and the actual states of the system. In this case, observations of the system over time can be incorporated into the model equations to derive “improved” estimates of the states and also to provide information about the “uncertainty” in the estimates.

[1]  P. Houtekamer,et al.  Data Assimilation Using an Ensemble Kalman Filter Technique , 1998 .

[2]  R. Pinnau Model Reduction via Proper Orthogonal Decomposition , 2008 .

[3]  Jens Schröter,et al.  A comparison of error subspace Kalman filters , 2005 .

[4]  S. Cohn,et al.  Assessing the Effects of Data Selection with the DAO Physical-Space Statistical Analysis System* , 1998 .

[5]  G. Bierman Factorization methods for discrete sequential estimation , 1977 .

[6]  D. Pham Stochastic Methods for Sequential Data Assimilation in Strongly Nonlinear Systems , 2001 .

[7]  Nancy Nichols,et al.  Accounting for Model Error in Data Assimilation using Adjoint Methods , 1996 .

[8]  A. Bratseth Statistical interpolation by means of successive corrections , 1986 .

[9]  Thomas Kaminski,et al.  Recipes for adjoint code construction , 1998, TOMS.

[10]  Andrew F. Bennett,et al.  Inverse Methods in Physical Oceanography: Frontmatter , 1992 .

[11]  Anna Ghelli Data assimilation for numerical weather prediction , 1992 .

[12]  R. S. Bell,et al.  The Meteorological Office analysis correction data assimilation scheme , 1991 .

[13]  Caroline Böß Using model reduction techniques within the incremental 4D-Var method , 2008 .

[14]  Andreas Griewank,et al.  Automatic Differentiation of Algorithms: From Simulation to Optimization , 2000, Springer New York.

[15]  Nancy Nichols,et al.  Inner-Loop Stopping Criteria for Incremental Four-Dimensional Variational Data Assimilation , 2006 .

[16]  Victor Shutyaev,et al.  Data assimilation for the earth system , 2003 .

[17]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[18]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .

[19]  David Katz,et al.  The Application of PV-based Control Variable Transformations in Variational Data Assimilation , 2007 .

[20]  Nancy Nichols,et al.  Unbiased ensemble square root filters , 2007 .

[21]  Yannick Trémolet,et al.  Diagnostics of linear and incremental approximations in 4D‐Var , 2004 .

[22]  J. Whitaker,et al.  Ensemble Square Root Filters , 2003, Statistical Methods for Climate Scientists.

[23]  F. Mesinger,et al.  Four-dimensional variational assimilation of precipitation data , 1995 .

[24]  Arlindo da Silva,et al.  Data assimilation in the presence of forecast bias , 1998 .

[25]  P. J. van Leeuwen,et al.  A variance-minimizing filter for large-scale applications , 2003 .

[26]  M. Zupanski Maximum Likelihood Ensemble Filter: Theoretical Aspects , 2005 .

[27]  Y. Sasaki SOME BASIC FORMALISMS IN NUMERICAL VARIATIONAL ANALYSIS , 1970 .

[28]  Nancy Nichols,et al.  An investigation of incremental 4D‐Var using non‐tangent linear models , 2005 .

[29]  G. P. Cressman AN OPERATIONAL OBJECTIVE ANALYSIS SYSTEM , 1959 .

[30]  M. Ghil,et al.  Data assimilation in meteorology and oceanography , 1991 .

[31]  Yannick Trémolet Incremental 4D-Var convergence study , 2007 .

[32]  J. Peraire,et al.  Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .

[33]  Philippe Courtier,et al.  A comparison between four-dimensional variational assimilation and simplified sequential assimilation relying on three-dimensional variational analysis , 1993 .

[34]  Jeffrey L. Anderson,et al.  A Monte Carlo Implementation of the Nonlinear Filtering Problem to Produce Ensemble Assimilations and Forecasts , 1999 .

[35]  C.,et al.  Analysis methods for numerical weather prediction , 2022 .

[36]  Nancy Nichols,et al.  DATA ASSIMILATION: AIMS AND BASIC CONCEPTS , 2003 .

[37]  Arnold W. Heemink,et al.  Model-Reduced Variational Data Assimilation , 2006 .

[38]  Nancy Nichols,et al.  Using Model Reduction Methods within Incremental Four-Dimensional Variational Data Assimilation , 2008 .

[39]  P. Bergthórsson,et al.  Numerical Weather Map Analysis , 1955 .

[40]  Liang Xu,et al.  Development of NAVDAS-AR: formulation and initial tests of the linear problem , 2005 .

[41]  Oliver Talagrand,et al.  A study of the dynamics of four-dimensional data assimilation , 1981 .

[42]  R. Daley Atmospheric Data Analysis , 1991 .

[43]  M. J. P. Cullen Four‐dimensional variational data assimilation: A new formulation of the background‐error covariance matrix based on a potential‐vorticity representation , 2003 .

[44]  Ecmwf Newsletter,et al.  EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS , 2004 .

[45]  Nancy Nichols,et al.  A comparison of two methods for developing the linearization of a shallow-water model , 2003 .

[46]  Nancy Nichols,et al.  Variational data assimilation for parameter estimation: application to a simple morphodynamic model , 2009 .

[47]  Nancy Nichols,et al.  Assimilation of data into an ocean model with systematic errors near the equator , 2004 .

[48]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[49]  Nancy Nichols,et al.  Adjoint Methods in Data Assimilation for Estimating Model Error , 2000 .

[50]  A. Stuart,et al.  Sampling the posterior: An approach to non-Gaussian data assimilation , 2007 .

[51]  P. Courtier,et al.  A strategy for operational implementation of 4D‐Var, using an incremental approach , 1994 .

[52]  D. Durran Numerical Methods for Fluid Dynamics , 2010 .

[53]  P. Courtier,et al.  Correlation modelling on the sphere using a generalized diffusion equation , 2001 .

[54]  Philippe Courtier,et al.  Dual formulation of four‐dimensional variational assimilation , 1997 .

[55]  Martin Berz,et al.  Computational differentiation : techniques, applications, and tools , 1996 .

[56]  Nancy Nichols,et al.  A singular vector perspective of 4D‐Var: Filtering and interpolation , 2005 .

[57]  Nancy Nichols,et al.  Modelling of forecast errors in geophysical fluid flows , 2008 .

[58]  A. Bennett Inverse Methods in Physical Oceanography , 1992 .

[59]  Nancy Nichols,et al.  Treatment of systematic errors in sequential data assimilation , 1999 .

[60]  A. Lorenc Optimal nonlinear objective analysis , 1988 .

[61]  A. Simmons,et al.  The ECMWF operational implementation of four‐dimensional variational assimilation. I: Experimental results with simplified physics , 2007 .

[62]  Istvan Szunyogh,et al.  A Local Ensemble Kalman Filter for Atmospheric Data Assimilation , 2002 .

[63]  Ionel M. Navon,et al.  A reduced‐order approach to four‐dimensional variational data assimilation using proper orthogonal decomposition , 2007 .

[64]  Angelika Bunse-Gerstner,et al.  h2-norm optimal model reduction for large scale discrete dynamical MIMO systems , 2010, J. Comput. Appl. Math..

[65]  Nancy Nichols,et al.  Use of potential vorticity for incremental data assimilation , 2006 .

[66]  Nancy Nichols,et al.  Very large inverse problems in atmosphere and ocean modelling , 2005 .

[67]  J. Derber A Variational Continuous Assimilation Technique , 1989 .

[68]  Nancy Nichols,et al.  Treating Model Error in 3-D and 4-D Data Assimilation , 2003 .

[69]  Roger Daley,et al.  NAVDAS: Formulation and Diagnostics , 2001 .

[70]  G. Eyink,et al.  Ensemble Filtering for Nonlinear Dynamics , 2003 .

[71]  Serge Gratton,et al.  Approximate Gauss-Newton Methods for Nonlinear Least Squares Problems , 2007, SIAM J. Optim..

[72]  Liang Xu,et al.  Development of NAVDAS-AR: non-linear formulation and outer loop tests , 2006 .

[73]  Craig H. Bishop,et al.  Adaptive sampling with the ensemble transform Kalman filter , 2001 .

[74]  Nancy Nichols,et al.  Estimation of systematic error in an equatorial ocean model using data assimilation , 2002 .

[75]  John L. Casti Introduction to the Mathematical Theory of Control Processes, Volume I: Linear Equations and Quadratic Criteria, Volume II: Nonlinear Processes , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[76]  Y. Trémolet Incremental 4D-Var convergence study , 2007 .

[77]  Richard Bellman,et al.  Introduction to the mathematical theory of control processes , 1967 .

[78]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .

[79]  D. Zupanski A General Weak Constraint Applicable to Operational 4DVAR Data Assimilation Systems , 1997 .