Minimization Algorithm for Symbolic Bisimilarity

The operational semantics of interactive systems is usually described by labeled transition systems. Abstract semantics is defined in terms of bisimilarity that, in the finite case, can be computed via the well-known partition refinement algorithm . However, the behaviour of interactive systems is in many cases infinite and thus checking bisimilarity in this way is unfeasible. Symbolic semantics allows to define smaller, possibly finite, transition systems, by employing symbolic actions and avoiding some sources of infiniteness. Unfortunately, the standard partition refinement algorithm does not work with symbolic bisimilarity.

[1]  Julian Bradfield CONCUR '96: Concurrency Theory , 1996 .

[2]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[3]  Davide Sangiorgi,et al.  A theory of bisimulation for the π-calculus , 2009, Acta Informatica.

[4]  Luca Cardelli,et al.  Mobile Ambients , 1998, FoSSaCS.

[5]  Reiko Heckel,et al.  Bisimilarity and Behaviour-Preserving Reconfigurations of Open Petri Nets , 2007, CALCO.

[6]  Mario Tokoro,et al.  An Object Calculus for Asynchronous Communication , 1991, ECOOP.

[7]  Marco Pistore,et al.  A Partition Refinement Algorithm for the -Calculus , 2001, Inf. Comput..

[8]  Ugo Montanari,et al.  Dynamic congruence vs. progressing bisimulation for CCS , 1992, Fundam. Informaticae.

[9]  Matthew Hennessy,et al.  Symbolic Bisimulations , 1995, Theor. Comput. Sci..

[10]  Marco Pistore,et al.  An Introduction to History Dependent Automata , 1998, HOOTS.

[11]  Davide Sangiorgi,et al.  On Bisimulations for the Asynchronous pi-Calculus , 1996, Theor. Comput. Sci..

[12]  A Di Pisa,et al.  Compositional Semantics for Open Petri Nets based on Deterministic Processes , 2001 .

[13]  Marco Pistore,et al.  Finite State Verification for the Asynchronous pi-Calculus , 1999, TACAS.

[14]  Ian Stark,et al.  Free-Algebra Models for the pi-Calculus , 2005, FoSSaCS.

[15]  Marco Pistore,et al.  Verifying Mobile Processes in the HAL Environment , 1998, CAV.

[16]  Francesco Zappa Nardelli,et al.  Bisimulation Proof Methods for Mobile Ambients , 2003, ICALP.

[17]  Faron Moller,et al.  The Mobility Workbench - A Tool for the pi-Calculus , 1994, CAV.

[18]  Laurent Mounier,et al.  "On the Fly" Verification of Behavioural Equivalences and Preorders , 1991, CAV.

[19]  Davide Sangiorgi,et al.  Communicating and Mobile Systems: the π-calculus, , 2000 .

[20]  Pierre America,et al.  ECOOP'91 European Conference on Object-Oriented Programming , 1991, Lecture Notes in Computer Science.

[21]  Robin Milner,et al.  Communicating and mobile systems - the Pi-calculus , 1999 .

[22]  Robert E. Tarjan,et al.  Three Partition Refinement Algorithms , 1987, SIAM J. Comput..

[23]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[24]  Scott A. Smolka,et al.  CCS expressions, finite state processes, and three problems of equivalence , 1983, PODC '83.

[25]  Alexander Kurz,et al.  Algebra and Coalgebra in Computer Science, Third International Conference, CALCO 2009, Udine, Italy, September 7-10, 2009. Proceedings , 2009, CALCO.

[26]  Ugo Montanari,et al.  Symbolic Semantics Revisited , 2008, FoSSaCS.