Classification of brain tumours from MR spectra: the INTERPRET collaboration and its outcomes

[1]  Joshua Underwood,et al.  Classification of brain tumours from MR spectra: the INTERPRET collaboration and its outcomes , 2015, NMR in biomedicine.

[2]  Gabriele Schackert,et al.  Molecular characterization of long‐term survivors of glioblastoma using genome‐ and transcriptome‐wide profiling , 2014, International journal of cancer.

[3]  Enrique Romero,et al.  Automated classification of brain tumours from short echo time in vivo MRS data using Gaussian Decomposition and Bayesian Neural Networks , 2014, Expert Syst. Appl..

[4]  Margarida Julià-Sapé,et al.  Multicentre evaluation of the INTERPRET decision support system 2.0 for brain tumour classification , 2014, NMR in biomedicine.

[5]  Wei Jiang,et al.  k-Nearest Neighbor Classification over Semantically Secure Encrypted Relational Data , 2014, IEEE Transactions on Knowledge and Data Engineering.

[6]  Juan Miguel García-Gómez,et al.  Randomized pilot study and qualitative evaluation of a clinical decision support system for brain tumour diagnosis based on SV 1H MRS: Evaluation as an additional information procedure for novice radiologists , 2014, Comput. Biol. Medicine.

[7]  Paulo J. G. Lisboa,et al.  A Novel Semi-Supervised Methodology for Extracting Tumor Type-Specific MRS Sources in Human Brain Data , 2013, PloS one.

[8]  D. Haussler,et al.  The Somatic Genomic Landscape of Glioblastoma , 2013, Cell.

[9]  Paulo J. G. Lisboa,et al.  Discriminant Convex Non-negative Matrix Factorization for the classification of human brain tumours , 2013, Pattern Recognit. Lett..

[10]  B. Rosen,et al.  Detection of oncogenic IDH1 mutations using magnetic resonance spectroscopy of 2-hydroxyglutarate. , 2013, The Journal of clinical investigation.

[11]  P. Larson,et al.  Metabolic Imaging of Patients with Prostate Cancer Using Hyperpolarized [1-13C]Pyruvate , 2013, Science Translational Medicine.

[12]  Jason C. Crane,et al.  SIVIC: Open-Source, Standards-Based Software for DICOM MR Spectroscopy Workflows , 2013, Int. J. Biomed. Imaging.

[13]  Theodoros N. Arvanitis,et al.  (1)H magnetic resonance spectroscopy in the diagnosis of paediatric low grade brain tumours. , 2013, European journal of radiology.

[14]  Salvador Tortajada,et al.  Extracting MRS discriminant functional features of brain tumors , 2013, NMR in biomedicine.

[15]  Pieter Wesseling,et al.  Accurate classification of childhood brain tumours by in vivo ¹H MRS - a multi-centre study. , 2013, European journal of cancer.

[16]  Margarida Julià-Sapé,et al.  Strategies for annotation and curation of translational databases: the eTUMOUR project , 2012, Database J. Biol. Databases Curation.

[17]  C Arús,et al.  Robust discrimination of glioblastomas from metastatic brain tumors on the basis of single‐voxel 1H MRS , 2012, NMR in biomedicine.

[18]  Margarida Julià-Sapé,et al.  Prospective diagnostic performance evaluation of single‐voxel 1H MRS for typing and grading of brain tumours , 2012, NMR in biomedicine.

[19]  Ovidiu C. Andronesi,et al.  Detection of 2-Hydroxyglutarate in IDH-Mutated Glioma Patients by In Vivo Spectral-Editing and 2D Correlation Magnetic Resonance Spectroscopy , 2012, Science Translational Medicine.

[20]  Enrique Romero,et al.  Brain tumour classification using Gaussian decomposition and neural networks , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[21]  Alfredo Vellido,et al.  Semi-Supervised Analysis of Human Brain Tumours from Partially Labeled MRS Information, Using Manifold Learning Models , 2011, Int. J. Neural Syst..

[22]  Salvador Tortajada,et al.  Incremental Gaussian Discriminant Analysis based on Graybill and Deal weighted combination of estimators for brain tumour diagnosis , 2011, J. Biomed. Informatics.

[23]  Sabine Van Huffel,et al.  A generic and extensible automatic classification framework applied to brain tumour diagnosis in HealthAgents , 2011, The Knowledge Engineering Review.

[24]  Madalina Croitoru,et al.  The HealthAgents ontology: knowledge representation in a distributed decision support system for brain tumours , 2011, The Knowledge Engineering Review.

[25]  Xavier Rafael Palou,et al.  A Web-accessible distributed data warehouse for brain tumour diagnosis , 2011, The Knowledge Engineering Review.

[26]  Bo Hu,et al.  The design and implementation of a novel security model for HealthAgents , 2011, The Knowledge Engineering Review.

[27]  J R Griffiths,et al.  Non-invasive grading of astrocytic tumours from the relative contents of myo-inositol and glycine measured by in vivo MRS. , 2011, JBR-BTR : organe de la Societe royale belge de radiologie (SRBR) = orgaan van de Koninklijke Belgische Vereniging voor Radiologie.

[28]  Pantelis Georgiadis,et al.  Quantitative combination of volumetric MR imaging and MR spectroscopy data for the discrimination of meningiomas from metastatic brain tumors by means of pattern recognition. , 2011, Magnetic resonance imaging.

[29]  Carlos Sáez,et al.  Compatibility between 3T 1H SV-MRS data and automatic brain tumour diagnosis support systems based on databases of 1.5T 1H SV-MRS spectra , 2011, Magnetic Resonance Materials in Physics, Biology and Medicine.

[30]  Margarida Julià-Sapé,et al.  The INTERPRET Decision-Support System version 3.0 for evaluation of Magnetic Resonance Spectroscopy data from human brain tumours and other abnormal brain masses , 2010, BMC Bioinformatics.

[31]  Francisco del Pozo,et al.  Diagnosis of brain tumours from magnetic resonance spectroscopy using wavelets and Neural Networks , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[32]  A. Vellido,et al.  Finding discriminative subtypes of aggressive brain tumours using magnetic resonance spectroscopy , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[33]  Franklyn A Howe,et al.  Combined use of neuroradiology and 1H‐MR spectroscopy may provide an intervention limiting diagnosis of glioblastoma multiforme , 2010, Journal of magnetic resonance imaging : JMRI.

[34]  M. Julià-Sapé,et al.  Proton MR Spectroscopy Provides Relevant Prognostic Information in High-Grade Astrocytomas , 2010, American Journal of Neuroradiology.

[35]  S. Ortega-Martorell,et al.  Improving the classification of brain tumors in mice with perturbation enhanced (PE)-MRSI , 2010, Integrative biology : quantitative biosciences from nano to macro.

[36]  L. Buydens,et al.  Visualization and recovery of the (bio)chemical interesting variables in data analysis with support vector machine classification. , 2010, Analytical chemistry.

[37]  Susan M. Chang,et al.  Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[38]  Margarida Julià-Sapé,et al.  SpectraClassifier 1.0: a user friendly, automated MRS-based classifier-development system , 2010, BMC Bioinformatics.

[39]  P. Ring,et al.  Short echo time MR spectroscopy of brain tumors: Grading of cerebral gliomas by correlation analysis of normalized spectral amplitudes , 2010, Journal of magnetic resonance imaging : JMRI.

[40]  Lluís A. Belanche Muñoz,et al.  Outlier exploration and diagnostic classification of a multi-centre 1H-MRS brain tumour database , 2009, Neurocomputing.

[41]  Juan Miguel García-Gómez,et al.  Ranking of Brain Tumour Classifiers Using a Bayesian Approach , 2009, IWANN.

[42]  Sabine Van Huffel,et al.  HealthAgents: distributed multi-agent brain tumor diagnosis and prognosis , 2009, Applied Intelligence.

[43]  Sabine Van Huffel,et al.  Nosologic imaging of the brain: segmentation and classification using MRI and MRSI , 2009, NMR in biomedicine.

[44]  À. Rovira,et al.  Proton MR Spectroscopy Improves Discrimination between Tumor and Pseudotumoral Lesion in Solid Brain Masses , 2009, American Journal of Neuroradiology.

[45]  Philip S. Yu,et al.  Next Generation of Data Mining , 2008, Chapman and Hall / CRC Data Mining and Knowledge Discovery Series.

[46]  Sabine Van Huffel,et al.  The effect of combining two echo times in automatic brain tumor classification by MRS , 2008, NMR in biomedicine.

[47]  Sabine Van Huffel,et al.  Multiproject–multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy , 2008, Magnetic Resonance Materials in Physics, Biology and Medicine.

[48]  Àngela Nebot,et al.  Rule-Based Assistance to Brain Tumour Diagnosis Using LR-FIR , 2008, KES.

[49]  Margarida Julià-Sapé,et al.  Exploratory Characterization of Outliers in a Multi-centre 1H-MRS Brain Tumour Dataset , 2008, KES.

[50]  Jan Luts,et al.  Effect of feature extraction for brain tumor classification based on short echo time 1H MR spectra , 2008, Magnetic resonance in medicine.

[51]  Elke Hattingen,et al.  Prognostic value of choline and creatine in WHO grade II gliomas , 2008, Neuroradiology.

[52]  Margarida Julià-Sapé,et al.  MRS quality assessment in a multicentre study on MRS‐based classification of brain tumours , 2008, NMR in biomedicine.

[53]  Arend Heerschap,et al.  Towards 1H-MRSI of the human brain at 7T with slice-selective adiabatic refocusing pulses , 2008, Magnetic Resonance Materials in Physics, Biology and Medicine.

[54]  Caterina Giannini,et al.  Panel Review of Anaplastic Oligodendroglioma From European Organization for Research and Treatment of Cancer Trial 26951: Assessment of Consensus in Diagnosis, Influence of 1p/19q Loss, and Correlations With Outcome , 2007, Journal of neuropathology and experimental neurology.

[55]  S Van Huffel,et al.  Fast nosologic imaging of the brain. , 2007, Journal of magnetic resonance.

[56]  Douglas B. Kell,et al.  Statistical strategies for avoiding false discoveries in metabolomics and related experiments , 2007, Metabolomics.

[57]  L. Buydens,et al.  Supervised Kohonen networks for classification problems , 2006 .

[58]  Pieter Wesseling,et al.  Comparison between neuroimaging classifications and histopathological diagnoses using an international multicenter brain tumor magnetic resonance imaging database. , 2006, Journal of neurosurgery.

[59]  A. W. Simonetti,et al.  Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra , 2006, NMR in biomedicine.

[60]  M. Julià-Sapé,et al.  A Multi-Centre, Web-Accessible and Quality Control-Checked Database of in vivo MR Spectra of Brain Tumour Patients , 2006, Magnetic Resonance Materials in Physics, Biology and Medicine.

[61]  Lutgarde M. C. Buydens,et al.  Application of independent component analysis to 1H MR spectroscopic imaging exams of brain tumours , 2005 .

[62]  Arend Heerschap,et al.  Combination of feature‐reduced MR spectroscopic and MR imaging data for improved brain tumor classification , 2005, NMR in biomedicine.

[63]  Margarida Julià-Sapé,et al.  Brain tumor classification by proton MR spectroscopy: comparison of diagnostic accuracy at short and long TE. , 2004, AJNR. American journal of neuroradiology.

[64]  J. Suykens,et al.  Classification of brain tumours using short echo time 1H MR spectra. , 2004, Journal of magnetic resonance.

[65]  Sabine Van Huffel,et al.  Brain tumor classification based on long echo proton MRS signals , 2004, Artif. Intell. Medicine.

[66]  E Le Rumeur,et al.  MRI texture analysis on texture test objects, normal brain and intracranial tumors. , 2003, Magnetic resonance imaging.

[67]  Christophe Ladroue,et al.  Independent component analysis for automated decomposition of in vivo magnetic resonance spectra , 2003, Magnetic resonance in medicine.

[68]  Arend Heerschap,et al.  A chemometric approach for brain tumor classification using magnetic resonance imaging and spectroscopy. , 2003, Analytical chemistry.

[69]  Mark Rijpkema,et al.  Multispectral magnetic resonance image analysis using principal component and linear discriminant analysis , 2003, Journal of magnetic resonance imaging : JMRI.

[70]  Carles Arús,et al.  Automated classification of short echo time in in vivo 1H brain tumor spectra: A multicenter study , 2003, Magnetic resonance in medicine.

[71]  A W Simonetti,et al.  Automated correction of unwanted phase jumps in reference signals which corrupt MRSI spectra after eddy current correction. , 2002, Journal of magnetic resonance.

[72]  Rosemary Luckin,et al.  Adequate Decision Support Systems Must Also Be Good Learning Environments , 2002, Intelligent Tutoring Systems.

[73]  Lutgarde M. C. Buydens,et al.  Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cem.721 Mixture modelling of medical magnetic resonance data , 2002 .

[74]  J. Taha,et al.  An Analysis of the Respective Risks of Hematoma Formation in 361 Consecutive Morphological and Functional Stereotactic Procedures , 2002, Neurosurgery.

[75]  P. Wesseling,et al.  Neuropathological diagnostic accuracy , 2002, British journal of neurosurgery.

[76]  G. Fuller,et al.  Limitations of stereotactic biopsy in the initial management of gliomas. , 2001, Neuro-oncology.

[77]  Witham,et al.  Comprehensive assessment of hemorrhage risks and outcomes after stereotactic brain biopsy. , 2001, Journal of neurosurgery.

[78]  Sylvie Grand,et al.  A new approach for analyzing proton magnetic resonance spectroscopic images of brain tumors: nosologic images , 2000, Nature Medicine.

[79]  Rosemary Luckin,et al.  Focussing User Studies: Requirements Capture for a Decision Support Tool , 2000 .

[80]  A Heerschap,et al.  Automatic correction for phase shifts, frequency shifts, and lineshape distortions across a series of single resonance lines in large spectral data sets. , 2000, Journal of magnetic resonance.

[81]  F. Abdul-Karim,et al.  Interobserver reproducibility among neuropathologists and surgical pathologists in fibrillary astrocytoma grading , 2000, Journal of the Neurological Sciences.

[82]  A R Tate,et al.  Towards a method for automated classification of 1H MRS spectra from brain tumours , 1998, NMR in biomedicine.

[83]  W. Hall The safety and efficacy of stereotactic biopsy for intracranial lesions , 1998, Cancer.

[84]  M Ala-Korpela,et al.  Automated classification of human brain tumours by neural network analysis using in vivo 1H magnetic resonance spectroscopic metabolite phenotypes. , 1996, Neuroreport.

[85]  D. Louis Collins,et al.  Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy , 1996, Nature Medicine.

[86]  S. Coons,et al.  Regional Heterogeneity in the Proliferative Activity of Human Gliomas as Measured by the Ki‐67 Labeling Index , 1993, Journal of neuropathology and experimental neurology.

[87]  J R Griffiths,et al.  Pattern recognition of 31P magnetic resonance spectroscopy tumour spectra obtained in vivo , 1993, NMR in biomedicine.

[88]  J R Griffiths,et al.  An Investigation of Tumor 1H Nuclear Magnetic Resonance Spectra by the Application of Chemometric Techniques , 1992, Magnetic resonance in medicine.

[89]  J R Griffiths,et al.  Classification of tumour 1H NMR spectra by pattern recognition , 1992, NMR in biomedicine.

[90]  P R Luyten,et al.  Detection of metabolic heterogeneity of human intracranial tumors in vivo by 1h nmr spectroscopic imaging , 1990, Magnetic resonance in medicine.

[91]  D. R. Wilkie,et al.  31P-NMR STUDIES OF A HUMAN TUMOUR IN SITU , 1983, The Lancet.

[92]  Theodoros N. Arvanitis,et al.  Diagnosing relapse in children's brain tumors using metabolite profiles. , 2014, Neuro-oncology.

[93]  J. Uhm IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype , 2012 .

[94]  Lluís A. Belanche Muñoz,et al.  Feature and model selection with discriminatory visualization for diagnostic classification of brain tumors , 2010, Neurocomputing.

[95]  J. Uhm MGMT Promoter Methylation Status Can Predict the Incidence and Outcome of Pseudoprogression After Concomitant Radiochemotherapy in Newly Diagnosed Glioblastoma Patients , 2009 .

[96]  E. Balas,et al.  Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success , 2005, BMJ : British Medical Journal.

[97]  A. W. Simonetti,et al.  Investigation of brain tumor classification and its reliability using chemometrics on MR spectroscopy and MR imaging data , 2004 .

[98]  Thomas Dierks,et al.  Determination of histopathological tumor grade in neuroepithelial brain tumors by using spectral pattern analysis of in vivo spectroscopic data. , 2003, Journal of neurosurgery.

[99]  Rosemary Luckin,et al.  A Prototype Decision Support System for MR Spectroscopy-Assisted Diagnosis of Brain Tumours , 2001, MedInfo.

[100]  A R Tate,et al.  Magnetic resonance spectroscopy of brain hemangiopericytomas: high myoinositol concentrations and discrimination from meningiomas. , 2001, Journal of neurosurgery.