A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations II: Adaptivity and generalizations

This is part II of our paper in which we propose and develop a dynamically bi-orthogonal method (DyBO) to study a class of time-dependent stochastic partial differential equations (SPDEs) whose solutions enjoy a low-dimensional structure. In part I of our paper [9], we derived the DyBO formulation and proposed numerical algorithms based on this formulation. Some important theoretical results regarding consistency and bi-orthogonality preservation were also established in the first part along with a range of numerical examples to illustrate the effectiveness of the DyBO method. In this paper, we focus on the computational complexity analysis and develop an effective adaptivity strategy to add or remove modes dynamically. Our complexity analysis shows that the ratio of computational complexities between the DyBO method and a generalized polynomial chaos method (gPC) is roughly of order O((m/N"p)^3) for a quadratic nonlinear SPDE, where m is the number of mode pairs used in the DyBO method and N"p is the number of elements in the polynomial basis in gPC. The effective dimensions of the stochastic solutions have been found to be small in many applications, so we can expect m is much smaller than N"p and computational savings of our DyBO method against gPC are dramatic. The adaptive strategy plays an essential role for the DyBO method to be effective in solving some challenging problems. Another important contribution of this paper is the generalization of the DyBO formulation for a system of time-dependent SPDEs. Several numerical examples are provided to demonstrate the effectiveness of our method, including the Navier-Stokes equations and the Boussinesq approximation with Brownian forcing.

[1]  Thomas Y. Hou,et al.  Wiener Chaos expansions and numerical solutions of randomly forced equations of fluid mechanics , 2006, J. Comput. Phys..

[2]  Andrew J. Majda,et al.  Lessons in uncertainty quantification for turbulent dynamical systems , 2012 .

[3]  Andrew J Majda,et al.  An applied mathematics perspective on stochastic modelling for climate , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  Yalchin Efendiev,et al.  Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..

[5]  Yvon Maday,et al.  Reduced basis method for the rapid and reliable solution of partial differential equations , 2006 .

[6]  Ruo Li,et al.  Dynamic Depletion of Vortex Stretching and Non-Blowup of the 3-D Incompressible Euler Equations , 2006, J. Nonlinear Sci..

[7]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[8]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[9]  Hamdi A. Tchelepi,et al.  Perturbation-based moment equation approach for flow in heterogeneous porous media: applicability range and analysis of high-order terms , 2003 .

[10]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[11]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[12]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[13]  Xiao-Hui Wu,et al.  EFFECTIVE PARAMETRIZATION FOR RELIABLE RESERVOIR PERFORMANCE PREDICTIONS , 2012 .

[14]  Ruo Li,et al.  Computing nearly singular solutions using pseudo-spectral methods , 2007, J. Comput. Phys..

[15]  Thomas Y. Hou,et al.  A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations I: Derivation and algorithms , 2013, J. Comput. Phys..

[16]  E Weinan,et al.  Invariant measures for Burgers equation with stochastic forcing , 2000, math/0005306.

[17]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[18]  Habib N. Najm,et al.  Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .

[19]  Yalchin Efendiev,et al.  Coarse-gradient Langevin algorithms for dynamic data integration and uncertainty quantification , 2006, J. Comput. Phys..

[20]  A. Chorin Gaussian fields and random flow , 1974, Journal of Fluid Mechanics.

[21]  F. Massaioli,et al.  Scaling And Intermittency In Burgers' Turbulence , 1995 .

[22]  G. Papanicolaou,et al.  Theory and applications of time reversal and interferometric imaging , 2003 .

[23]  Christoph Schwab,et al.  Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..

[24]  G. Karniadakis,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .

[25]  Jack Xin,et al.  Multi-Channel $l_{1}$ Regularized Convex Speech Enhancement Model and Fast Computation by the Split Bregman Method , 2012, IEEE Transactions on Audio, Speech, and Language Processing.

[26]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[27]  R. Ghanem,et al.  Uncertainty propagation using Wiener-Haar expansions , 2004 .

[28]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[29]  Wuan Luo Wiener Chaos Expansion and Numerical Solutions of Stochastic Partial Differential Equations , 2006 .

[30]  T. Faniran Numerical Solution of Stochastic Differential Equations , 2015 .

[31]  HackbuschW. A sparse matrix arithmetic based on H-matrices. Part I , 1999 .

[32]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[33]  Kari Karhunen,et al.  Über lineare Methoden in der Wahrscheinlichkeitsrechnung , 1947 .

[34]  Houman Owhadi,et al.  Optimal Uncertainty Quantification , 2010, SIAM Rev..

[35]  A. Chorin,et al.  Implicit sampling for particle filters , 2009, Proceedings of the National Academy of Sciences.

[36]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[37]  Y. Maday,et al.  Reduced Basis Techniques for Stochastic Problems , 2010, 1004.0357.

[38]  G. Papanicolaou,et al.  Imaging and time reversal in random media , 2001 .

[39]  T. Sapsis,et al.  Dynamical criteria for the evolution of the stochastic dimensionality in flows with uncertainty , 2012 .

[40]  Daniele Venturi,et al.  Stochastic low-dimensional modelling of a random laminar wake past a circular cylinder , 2008, Journal of Fluid Mechanics.

[41]  Yalchin Efendiev,et al.  Multiscale Finite Element Methods: Theory and Applications , 2009 .

[42]  D. Birchall,et al.  Computational Fluid Dynamics , 2020, Radial Flow Turbocompressors.

[43]  Thomas Y. Hou,et al.  An efficient dynamically adaptive mesh for potentially singular solutions , 2001 .

[44]  Russel E. Caflisch,et al.  Quasi-Random Sequences and Their Discrepancies , 1994, SIAM J. Sci. Comput..

[45]  N. Wiener The Homogeneous Chaos , 1938 .

[46]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[47]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[48]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[49]  Thomas Y. Hou,et al.  Adaptive Data Analysis via Sparse Time-Frequency Representation , 2011, Adv. Data Sci. Adapt. Anal..

[50]  David W. Lewis,et al.  Matrix theory , 1991 .

[51]  T. Mexia,et al.  Author ' s personal copy , 2009 .

[52]  Daniele Venturi,et al.  On proper orthogonal decomposition of randomly perturbed fields with applications to flow past a cylinder and natural convection over a horizontal plate , 2006, Journal of Fluid Mechanics.

[53]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[54]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[55]  Jack Xin,et al.  A convex model and L1 minimization for musical noise reduction in blind source separation , 2012 .

[56]  O. L. Maître,et al.  A Newton method for the resolution of steady stochastic Navier–Stokes equations , 2009 .

[57]  Andrew J. Majda,et al.  A mathematical framework for stochastic climate models , 2001 .

[58]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[59]  Pierre F. J. Lermusiaux,et al.  Dynamically orthogonal field equations for continuous stochastic dynamical systems , 2009 .

[60]  Yalchin Efendiev,et al.  Preconditioning Markov Chain Monte Carlo Simulations Using Coarse-Scale Models , 2006, SIAM J. Sci. Comput..

[61]  Xiang Ma,et al.  An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations , 2009, J. Comput. Phys..

[62]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[63]  T. Hou,et al.  Data-driven time-frequency analysis , 2012, 1202.5621.

[64]  Mulin Cheng,et al.  Adaptive Methods Exploring Intrinsic Sparse Structures of Stochastic Partial Differential Equations , 2013 .

[65]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[66]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[67]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[68]  Andrew M. Stuart,et al.  Uncertainty Quantification and Weak Approximation of an Elliptic Inverse Problem , 2011, SIAM J. Numer. Anal..