Stability region for a class of open-loop unstable linear systems: Theory and application

A new method to calculate the stability region of scalar systems with one unstable pole subject to control limitations is derived and used to determine the conditions for a maximum stabilizer controller. The results are illustrated by means of two numerical examples and experiments on the real COMPASS-D tokamak.

[1]  Zongli Lin,et al.  Semi-global exponential stabilization of linear discrete-time systems subject to input saturation via linear feedbacks , 1995 .

[2]  M. Chung,et al.  Estimation of the asymptotic stability region of uncertain systems with bounded sliding mode controllers , 1994, IEEE Trans. Autom. Control..

[3]  A. Megretski,et al.  L 2 Bibo Output Feedback Stabilization With Saturated Control , 1996 .

[4]  A. S. I. Zinober,et al.  Adaptive relay control of second-order systems , 1975 .

[5]  Franco Blanchini Feedback control for linear time-invariant systems with state and control bounds in the presence of disturbances , 1990 .

[6]  S. Żak,et al.  Robust output feedback stabilization of uncertain dynamic systems with bounded controllers , 1993 .

[7]  M. Corless,et al.  Bounded controllers for robust exponential convergence , 1993 .

[8]  George Bitsoris,et al.  Constrained regulation of linear systems , 1995, Autom..

[9]  J. Karl Hedrick,et al.  Some new results on closed-loop stability in the presence of control saturation , 1995 .

[10]  Zongli Lin,et al.  Semi-global Exponential Stabilization of Linear Systems Subject to \input Saturation" via Linear Feedbacks , 1993 .

[11]  V. Kamenetskiy,et al.  Construction of a Constrained Stabilizing Feedback by Lyapunov Functions 1 , 1996 .

[12]  R. T. Crossland,et al.  COMPASS MACHINE DESIGN AND CONSTRUCTION , 1989 .

[13]  Suhada Jayasuriya,et al.  Stabilizability of Unstable Linear Plants Under Bounded Control , 1995 .

[14]  John Y. Hung,et al.  Variable structure control: a survey , 1993, IEEE Trans. Ind. Electron..

[15]  J. Hennet,et al.  Feedback control of linear discrete-time systems under state and control constraints , 1988 .

[16]  Luigi. Scibile,et al.  Non-linear control of the plasma vertical position in a tokamak , 1997 .

[17]  Per-olof Gutman,et al.  Admissible sets and feedback control for discrete-time linear dynamical systems with bounded controls and states , 1984, The 23rd IEEE Conference on Decision and Control.

[18]  M. Cwikel,et al.  Convergence of an algorithm to find maximal state constraint sets for discrete-time linear dynamical systems with bounded controls and states , 1985, 1985 24th IEEE Conference on Decision and Control.

[19]  Irmgard Flugge-Lotz,et al.  Discontinuous Automatic Control , 1953 .

[20]  Parag Vyas,et al.  VERTICAL POSITION CONTROL ON COMPASS-D , 1998 .

[21]  F. Blanchini,et al.  Constrained stabilization with an assigned initial condition set , 1995 .

[22]  Mehrez Hached,et al.  Estimation of sliding mode domains of uncertain variable structure systems with bounded controllers , 1990 .

[23]  Basil Kouvaritakis,et al.  A priori stability conditions for an arbitrary number of unstable poles , 1996, Autom..

[24]  Sophie Tarbouriech,et al.  Continuous-time saturated state feedback regulators: theory and design , 1994 .

[25]  Stanislaw H. Żak,et al.  Practical stabilization of nonlinear/uncertain dynamic systems with bounded controllers , 1995 .