Envisat MIPAS measurements of CFC-11: retrieval, validation, and climatology

From July 2002 to March 2004 the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aboard the European Space Agency's Environmental Satel- lite (Envisat) measured nearly continuously mid infrared limb radiance spectra. These measurements are utilised to re- trieve the global distribution of the chlorofluorocarbon CFC- 11 by applying a new fast forward model for Envisat MIPAS and an accompanying optimal estimation retrieval processor. A detailed analysis shows that the total retrieval errors of the individual CFC-11 volume mixing ratios are typically below 10% in the altitude range 10 to 25 km and that the system- atic components dominate. Contribution of a priori informa- tion to the retrieval results are less than 5 to 10% and the vertical resolution of the observations is about 3 to 4 km in the same vertical range. The data are successfully validated by comparison with several other space experiments, an air- borne in-situ instrument, measurements from ground-based networks, and independent Envisat MIPAS analyses. The re- trieval results from 425 000 Envisat MIPAS limb scans are compiled to provide a new climatological data set of CFC- 11. The climatology shows significantly lower CFC-11 abun- dances in the lower stratosphere compared with the Refer- ence Atmospheres for MIPAS (RAMstan V3.1) climatology. Depending on the atmospheric conditions the differences be- tween the climatologies are up to 30 to 110 ppt (45 to 150%) at 19 to 27 km altitude. Additionally, time series of CFC- 11 mean abundance and variability for five latitudinal bands are presented. The observed CFC-11 distributions can be explained by the residual mean circulation and large-scale eddy-transports in the upper troposphere and lower strato- sphere. The new CFC-11 data set is well suited for further scientific studies.

[1]  Bruce Woodcock Writing the revolution: Aspects of Thomas Paine's prose , 1992 .

[2]  Martyn P. Chipperfield,et al.  The effects of mixing on tracer relationships in the polar vortices , 2000 .

[3]  T. Clarmann,et al.  Retrieval of stratospheric ozone profiles from MIPAS/ENVISAT limb emission spectra: a sensitivity study , 2005 .

[4]  J. Remedios,et al.  Growth rates of stratospheric HCFC-22 , 2007 .

[5]  J. Kumer,et al.  DISTRIBUTION AND SEASONAL VARIATION OF CFCS IN THE STRATOSPHERE: COMPARISON OF SATELLITE GLOBAL DATA AND A 2-D MODEL , 1998 .

[6]  Thomas W. N. Haine,et al.  Relationships among tracer ages , 2003 .

[7]  C. Rodgers,et al.  Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation , 1976 .

[8]  Stanley C. Solomon,et al.  Stratospheric ozone depletion: A review of concepts and history , 1999 .

[9]  T. von Clarmann,et al.  Selection of optimized microwindows for atmospheric spectroscopy. , 1998, Applied optics.

[10]  A. McDaniel,et al.  The temperature dependent, infrared absorption cross-sections for the chlorofluorocarbons: CFC-11, CFC-12, CFC-13, CFC-14, CFC-22, CFC-113, CFC-114, and CFC-115 , 1991 .

[11]  E. Mahieu,et al.  The 1994 Northern Midlatitude Budget of Stratospheric Chlorine Derived From ATMOS/ATLAS-3 Observations , 1996 .

[12]  C. Rodgers Characterization and Error Analysis of Profiles Retrieved From Remote Sounding Measurements , 1990 .

[13]  C. B. Farmer,et al.  The 1985 chlorine and fluorine inventories in the stratosphere based on ATMOS observations at 30° north latitude , 1992 .

[14]  John A. Pyle,et al.  Cumulative mixing inferred from stratospheric tracer relationships , 2002 .

[15]  Franz Schreier,et al.  Modelling of atmospheric mid-infrared radiative transfer: the AMIL2DA algorithm intercomparison experiment , 2003 .

[16]  Yuk L. Yung,et al.  The Atmospheric Trace Molecule Spectroscopy (ATMOS) Experiment: Deployment on the ATLAS Space Shuttle Missions , 1996 .

[17]  Michael Kiefer,et al.  On the role of non-random errors in inverse problems in radiative transfer and other applications , 2001 .

[18]  D. McKenna,et al.  The O3N2O relation from balloon‐borne observations as a measure of Arctic ozone loss in 1991/92 , 2001 .

[19]  Larry L. Gordley,et al.  BANDPAK: Algorithms for modeling broadband transmission and radiance , 1994 .

[20]  Clive D. Rodgers,et al.  Information content and optimisation of high spectral resolution remote measurements , 1998 .

[21]  P. E. Morris,et al.  Optimized forward model and retrieval scheme for MIPAS near-real-time data processing. , 2000, Applied optics.

[22]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[23]  Laurence S. Rothman,et al.  The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001 , 2003 .

[24]  Vincent R. Gray Climate Change 2007: The Physical Science Basis Summary for Policymakers , 2007 .

[25]  Gail P. Anderson,et al.  Cryogenic Infrared Radiance Instrumentation for Shuttle (CIRRIS 1A) Earth limb spectral measurements, calibration, and atmospheric O3, HNO3, CFC‐12, and CFC‐11 profile retrieval , 1997 .

[26]  M. Kaufmann,et al.  Retrieval of CFC-11 and CFC-12 from Envisat MIPAS observations by means of rapid radiative transfer calculations , 2005 .

[27]  J. Notholt FTIR measurements of HF, N2O and CFCs during the Arctic polar night with the Moon as light source, subsidence during winter 1992/93 , 1994 .

[28]  Tatsuya Yokota,et al.  Improved Limb Atmospheric Spectrometer (ILAS) data retrieval algorithm for Version 5.20 gas profile products , 2002 .

[29]  Clive D Rodgers,et al.  Microwindow selection for high-spectral-resolution sounders. , 2002, Applied optics.

[30]  J. Louet,et al.  ENVISAT mission and system , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[31]  D. Edwards,et al.  Forward modeling and radiative transfer for the NASA EOS‐Aura High Resolution Dynamics Limb Sounder (HIRDLS) instrument , 2006 .

[32]  Peter Barthol,et al.  CRyogenic Infrared Spectrometers and Telescopes for the Atmosphere - CRISTA , 1999, Optical Remote Sensing of the Atmosphere.

[33]  Martin Riese,et al.  The CRISTA‐2 mission , 2002 .

[34]  Gerald Wetzel,et al.  Geophysical validation of temperature retrieved by the ESA processor from MIPAS / ENVISAT atmospheric limb-emission measurements , 2007 .

[35]  M. Endemann MIPAS Instrument Concept and Performance , 2000 .

[36]  T. Clarmann,et al.  MIPAS: an instrument for atmospheric and climate research , 2007 .

[37]  H. Oelhaf,et al.  Remote sensing of vertical profiles of atmospheric trace constituents with MlPAS limb-emission spectrometers. , 1996, Applied Optics.

[38]  J. Remedios,et al.  Colour indices for the detection and differentiation of cloud types in infra-red limb emission spectra , 2004 .

[39]  D. Cunnold,et al.  Simulation of the global CFC 11 using the Los Alamos chemical tracer model , 1992 .

[40]  R. Prinn,et al.  A global three‐dimensional model of the circulation and chemistry of CFCl3, CF2Cl2, CH3CCl3, CCl4, and N2O , 1986 .

[41]  Fausto Spoto,et al.  The Envisat satellite and its integration , 2001 .

[42]  D. Blake,et al.  Large-scale latitudinal and vertical distributions of NMHCs and selected halocarbons in the troposphere over the Pacific Ocean during the March-April 1999 Pacific Exploratory Mission (PEM-Tropics B) , 2001 .

[43]  Cathy Clerbaux,et al.  Spectroscopic measurements of halocarbons and hydrohalocarbons by satellite‐borne remote sensors , 2003 .

[44]  S. J. Ciciora,et al.  Airborne gas chromatograph for in situ measurements of long‐lived species in the upper troposphere and lower stratosphere , 1996 .

[45]  Prasad Varanasi,et al.  Absorption coefficients of CFC-11 and CFC-12 needed for atmospheric remote sensing and global warming studies , 1992 .

[46]  Hermann Oelhaf,et al.  Remote sensing of vertical profiles of atmospheric trace constituents with MIPAS limb emission spectrometers , 1998, Asia-Pacific Environmental Remote Sensing.

[47]  D. Waugh,et al.  AGE OF STRATOSPHERIC AIR: THEORY, OBSERVATIONS, AND MODELS , 2002 .

[48]  Martin Riese,et al.  CRyogenic Infrared Spectrometers and Telescopes for the Atmosphere - CRISTA , 1999, Optical Remote Sensing of the Atmosphere.

[49]  Manuel López-Puertas,et al.  MIPAS level 2 operational analysis , 2006 .

[50]  Bernd Funke,et al.  Sensitivity of trace gas abundances retrievals from infrared limb emission spectra to simplifying approximations in radiative transfer modelling , 2002 .

[51]  G. Brasseur,et al.  Three‐dimensional simulation of stratospheric trace gas distributions measured by CRISTA , 1999 .

[52]  D. Offermann,et al.  Tropopause region temperatures and CFC 11 mixing ratios from CRISTA 2 , 2005 .

[53]  R. Norton,et al.  New apodizing functions for Fourier spectrometry , 1976 .

[54]  L. Gordley,et al.  Rapid inversion of limb radiance data using an emissivity growth approximation. , 1981, Applied optics.

[55]  S. R. Drayson,et al.  Validation of aerosol measurements from the Halogen Occultation Experiment , 1996 .

[56]  Pi-Huan Wang,et al.  CRISTA observations of cirrus clouds around the tropopause , 2002 .

[57]  R. Prinn,et al.  Evaluating chemical transport models: Comparison of effects of different CFC‐11 emission scenarios , 1996 .

[58]  Lars Hoffmann,et al.  Schnelle Spurengasretrieval für das Satellitenexperiment Envisat MIPAS , 2006 .

[59]  R. Norton,et al.  Errata: New Apodizing Functions For Fourier Spectrometry , 1977 .

[60]  D. Offermann,et al.  Trace gas variability in the stratosphere , 2004 .

[61]  C. Piccolo,et al.  Precision validation of MIPAS-Envisat products , 2007 .

[62]  H.-L. Huang,et al.  Estimating effective data density in a satellite retrieval or an objective analysis , 1993 .

[63]  MIPAS Level 1B algorithms overview: operational processing and characterization , 2006 .

[64]  C. Piccolo,et al.  First results of MIPAS/ENVISAT with operational Level 2 code , 2004 .

[65]  M. Kiefer,et al.  Characterization of MIPAS elevation pointing , 2006 .

[66]  M. Kiefer,et al.  Retrieval of temperature and tangent altitude pointing from limb emission spectra recorded from space by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) , 2003 .

[67]  Michael P. Weinreb,et al.  Method to Apply Homogeneous-Path Transmittance Models to Inhomogeneous Atmospheres. , 1973 .

[68]  R. Weiss,et al.  A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE , 2000 .

[69]  D. Hauglustaine,et al.  MIPAS reference atmospheres and comparisons to V4.61/V4.62 MIPAS level 2 geophysical data sets , 2007 .

[70]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[71]  J. Remedios,et al.  The potential for radiometric retrievals of halocarbon concentrations from the MIPAS-E instrument , 2006 .

[72]  T. Clarmann,et al.  MIPAS measurements of upper tropospheric C2H6 and O3 during the southern hemispheric biomass burning season in 2003 , 2007 .

[73]  G. Perron,et al.  MIPAS IN-FLIGHT CALIBRATION AND PROCESSOR VERIFICATION , 1993 .