Surface electronic structure transitions at high temperature on perovskite oxides: the case of strained La0.8Sr0.2CoO3 thin films.

In-depth probing of the surface electronic structure on solid oxide fuel cell (SOFC) cathodes, considering the effects of high temperature, oxygen pressure, and material strain state, is essential toward advancing our understanding of the oxygen reduction activity on them. Here, we report the surface structure, chemical state, and electronic structure of a model transition metal perovskite oxide system, strained La(0.8)Sr(0.2)CoO(3) (LSC) thin films, as a function of temperature up to 450 °C in oxygen partial pressure of 10(-3) mbar. Both the tensile and the compressively strained LSC film surfaces transition from a semiconducting state with an energy gap of 0.8-1.5 eV at room temperature to a metallic-like state with no energy gap at 200-300 °C, as identified by in situ scanning tunneling spectroscopy. The tensile strained LSC surface exhibits a more enhanced electronic density of states (DOS) near the Fermi level following this transition, indicating a more highly active surface for electron transfer in oxygen reduction. The transition to the metallic-like state and the relatively more enhanced DOS on the tensile strained LSC at elevated temperatures result from the formation of oxygen vacancy defects, as supported by both our X-ray photoelectron spectroscopy measurements and density functional theory calculations. The reversibility of the semiconducting-to-metallic transitions of the electronic structure discovered here, coupled to the strain state and temperature, underscores the necessity of in situ investigations on SOFC cathode material surfaces.

[1]  M. Langell,et al.  Analysis of the NiCo2O4 spinel surface with Auger and X-ray photoelectron spectroscopy , 2000 .

[2]  J. Janek,et al.  Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films--theoretical considerations and experimental studies. , 2009, Physical chemistry chemical physics : PCCP.

[3]  Gabor A. Somorjai,et al.  Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. , 2009, Journal of the American Chemical Society.

[4]  T. Bučko,et al.  Effects of lattice expansion on the reactivity of a one-dimensional oxide. , 2009, Journal of the American Chemical Society.

[5]  Jürgen Fleig,et al.  Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)O3-δ model electrodes , 2006 .

[6]  T. Ward,et al.  Tunable metallicity of the La5/8Ca3/8MnO3(001) surface by an oxygen overlayer. , 2009, Physical review letters.

[7]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[8]  Allan J. Jacobson,et al.  Materials for Solid Oxide Fuel Cells , 2010 .

[9]  D. Hamann,et al.  Electronic Structure of a "Poisoned" Transition-Metal Surface , 1984 .

[10]  Harumi Yokokawa,et al.  Enhancement of oxygen exchange at the hetero interface of (La,Sr)CoO3/(La,Sr)2CoO4 in composite ceramics , 2008 .

[11]  Bilge Yildiz,et al.  Competing strain effects in reactivity of LaCoO 3 with oxygen , 2010 .

[12]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[13]  Axel Groß,et al.  Theoretical Surface Science , 2003 .

[14]  J. Hanson,et al.  Experimental and theoretical studies on the reaction of H(2) with NiO: role of O vacancies and mechanism for oxide reduction. , 2002, Journal of the American Chemical Society.

[15]  J. Goodenough,et al.  Magnetic and Transport Properties of the System La1-xSrxCoO3-δ (0 < x ≤ 0.50) , 1995 .

[16]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[17]  H. Freund,et al.  Measuring the charge state of point defects on MgO/Ag(001). , 2009, Journal of the American Chemical Society.

[18]  V. Henrich,et al.  Experimental study of the interfacial cobalt oxide in Co 3 O 4 /α-Al 2 O 3 (0001) epitaxial films , 2009, 0910.2647.

[19]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[20]  Xue-qing Gong,et al.  Small Au and Pt clusters at the anatase TiO2(101) surface: behavior at terraces, steps, and surface oxygen vacancies. , 2008, Journal of the American Chemical Society.

[21]  M. Bedzyk,et al.  Direct atomic-scale observation of redox-induced cation dynamics in an oxide-supported monolayer catalyst: WO(x)/alpha-Fe(2)O(3)(0001). , 2009, Journal of the American Chemical Society.

[22]  B. Yildiz,et al.  Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations , 2011 .

[23]  T. Madey,et al.  Resonant electron emission in Ti and TiO2 , 1983 .

[24]  M. Mavrikakis,et al.  Atomic-scale evidence for an enhanced catalytic reactivity of stretched surfaces. , 2003, Angewandte Chemie.

[25]  N. Sakai,et al.  Cation diffusion in (La,Ca)CrO3 perovskite by SIMS , 1998 .

[26]  K. Dörr Ferromagnetic manganites: spin-polarized conduction versus competing interactions , 2006 .

[27]  B. Yildiz,et al.  Degradation Mechanism in La0.8Sr0.2CoO3 as Contact Layer on the Solid Oxide Electrolysis Cell Anode , 2010 .

[28]  J. Philipp,et al.  Effect of strain and tetragonal lattice distortions in doped perovskite manganites , 2006 .

[29]  Hiroyuki Tanaka,et al.  Surface Structure and Electronic Property of Reduced SrTiO3(100) Surface Observed by Scanning Tunneling Microscopy/Spectroscopy , 1993 .

[30]  Eugene A. Kotomin,et al.  Pathways for Oxygen Incorporation in Mixed Conducting Perovskites: A DFT-Based Mechanistic Analysis for (La, Sr)MnO3−δ , 2010 .

[31]  R. Bachelot,et al.  Off-Resonant Optical Excitation of Gold Nanorods: Nanoscale Imprint of Polarization Surface Charge Distribution. , 2011, The journal of physical chemistry letters.

[32]  B. Yildiz,et al.  Enhanced one dimensional mobility of oxygen on strained LaCoO3(001) surface , 2011 .

[33]  M. Langell,et al.  Cobalt oxide surface chemistry: The interaction of CoO(1 0 0), Co3O4(1 1 0) and Co3O4(1 1 1) with oxygen and water , 2008 .

[34]  J. Rossmeisl,et al.  Trends in stability of perovskite oxides. , 2010, Angewandte Chemie.

[35]  B. Yildiz,et al.  Electron tunneling characteristics on La0.7Sr0.3MnO3 thin-film surfaces at high temperature , 2009 .

[36]  M. Inaba,et al.  Metal–Insulator Transition and Crystal Structure of La1−xSrxCoO3as Functions of Sr-Content, Temperature, and Oxygen Partial Pressure☆ , 1999 .

[37]  Yoshinori Tokura,et al.  Critical features of colossal magnetoresistive manganites , 2006 .

[38]  Annabella Selloni,et al.  Electronic structure of defect states in hydroxylated and reduced rutile TiO2(110) surfaces. , 2006, Physical review letters.

[39]  S J Pennycook,et al.  Colossal Ionic Conductivity at Interfaces of Epitaxial ZrO2:Y2O3/SrTiO3 Heterostructures , 2008, Science.

[40]  M. Ziese,et al.  Strain-induced orbital ordering in thinLa0.7Ca0.3MnO3films onSrTiO3 , 2003 .

[41]  K. Cheng,et al.  High optical quality InAs site-controlled quantum dots grown on soft photocurable nanoimprint lithography patterned GaAs substrates , 2009 .

[42]  G. Thornton,et al.  Impact of defects on the surface chemistry of ZnO(0001 macro)-O. , 2002, Journal of the American Chemical Society.

[43]  D. Bonnell,et al.  Structures and chemistry of the annealed SrTiO3(001) surface , 1994 .

[44]  Dane Morgan,et al.  Ab initio energetics of LaBO3(001) (B=Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes , 2009 .

[45]  Ming Liu,et al.  Epitaxial Strain-Induced Chemical Ordering in La0.5Sr0.5CoO3−δ Films on SrTiO3 , 2011 .

[46]  K. Szot,et al.  Localized metallic conductivity and self-healing during thermal reduction of SrTiO3. , 2002, Physical review letters.

[47]  A. D. Rata,et al.  Strain-induced insulator state and giant gauge factor of La0.7Sr0.3CoO3 films. , 2008, Physical review letters.

[48]  S. Adler Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.

[49]  J. Morante,et al.  Concerning the 506cm−1 band in the Raman spectrum of silicon nanowires , 2007 .

[50]  Jens K. Nørskov,et al.  Electronic factors determining the reactivity of metal surfaces , 1995 .

[51]  J. Nørskov,et al.  Effect of Strain on the Reactivity of Metal Surfaces , 1998 .

[52]  Michael F Toney,et al.  Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. , 2010, Nature chemistry.

[53]  S. Ogale,et al.  Stress relaxation of La1/2Sr1/2MnO3 and La2/3Ca1/3MnO3 at solid oxide fuel cell interfaces , 2008 .

[54]  Jens K Nørskov,et al.  Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. , 2006, Angewandte Chemie.

[55]  J. Goodenough,et al.  LaCoO{sub 3} revisited , 1995 .

[56]  H. Tagawa,et al.  Nonstoichiometry of the perovskite-type oxides La1−xSrxCoO3−δ , 1989 .

[57]  E. Lægsgaard,et al.  The importance of bulk Ti3+ defects in the oxygen chemistry on titania surfaces. , 2011, Journal of the American Chemical Society.

[58]  Y. Orikasa,et al.  Catalytic activity enhancement for oxygen reduction on epitaxial perovskite thin films for solid-oxide fuel cells. , 2010, Angewandte Chemie.

[59]  Juergen Fleig,et al.  Optimized La0.6Sr0.4CoO3–δ Thin‐Film Electrodes with Extremely Fast Oxygen‐Reduction Kinetics , 2009 .

[60]  B. Yildiz,et al.  Oxygen ion diffusivity in strained yttria stabilized zirconia: where is the fastest strain? , 2010 .

[61]  B. Weckhuysen,et al.  On the surface chemistry of iron oxides in reactive gas atmospheres. , 2011, Angewandte Chemie.

[62]  M. V. Ganduglia-Pirovano,et al.  Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges , 2007 .

[63]  S. Jiang,et al.  Activation, microstructure, and polarization of solid oxide fuel cell cathodes , 2006 .

[64]  S. Ramanathan,et al.  Interface proximity effects on ionic conductivity in nanoscale oxide-ion conducting yttria stabilized zirconia: an atomistic simulation study. , 2011, The Journal of chemical physics.

[65]  S. Liou,et al.  Surface segregation and restructuring of colossal-magnetoresistant manganese perovskites La 0.65 Sr 0.35 MnO 3 , 2000 .

[66]  A. Maiti,et al.  Chemistry of NO2 on oxide surfaces: formation of NO3 on TiO2(110) and NO2<-->O vacancy interactions. , 2001, Journal of the American Chemical Society.

[67]  S. Licoccia,et al.  Enhancement of ionic conductivity in Sm-doped ceria/yttria-stabilized zirconia heteroepitaxial structures. , 2010, Small.