A Review of Numerical and Experimental Characterization of Thermal Protection Materials - Part III. Experimental Testing

Thermal protection materials are required to preserve structural components of space vehicles during the re-entry stage, missile launching systems, and solid rocket motors. A comprehensive literature survey was conducted to review the experimental test methods as well as erosion and heat transfer data relevant to the performance of thermal protection materials for different applications. Laboratory scale apparatus, small-scale and subscale solid rocket motors were used to test these thermal protection materials. A wide range of thermal protection materials such as cork, fiber-reinforced phenolics, fiber-reinforced silicone, filled-elastomers, filled-silicone nanocomposites, and phenolic fiber-reinforced nanocomposites were included. This paper is the third in a four-part comprehensive literature survey that is grouped into numerical modeling, properties characterization, experimental testing, and advanced nozzle throat material. I. Introduction hermal protection materials are required to protect structural components of space vehicles during the re-entry stage, missile launching systems, and solid rocket motors. A thorough literature survey was conducted to review the numerical and experimental characterization of these thermal protection materials for different military and aerospace applications. The literature survey is grouped into: (a) numerical modeling, 1 (b) materials thermophysical properties characterization, 2 (c) experimental testing, and (d) advanced nozzle throat material. In this paper, only the experimental testing literature will be discussed. The numerical modeling 1 and thermophysical properties 2 reviews were published previously, and advanced nozzle throat material will be presented in a subsequent review.

[1]  Joseph H. Koo,et al.  Steady/transient plume-launcher interactions and progress towards particulate/surface layer modeling , 1995 .

[2]  F. B. Cheung,et al.  Numerical investigation of thermo-chemical and mechanical erosion of ablative materials , 1993 .

[3]  V. Jones,et al.  In-depth response of charring ablators to high temperature environment , 1999 .

[4]  D. Kavanaugh,et al.  A post burn outgassing and thrust prediction for the IUS solid rocket motors , 1980 .

[5]  Alex McCool,et al.  Modeling the Gas Dynamics Environment in a Subscale Solid Rocket Test Motor , 2001 .

[6]  V. A. Burakov,et al.  Mathematical modeling of the dynamics of slagging and thermochemical destruction of carbon composite thermal protective materials in a high-temperature two-phase flow , 1997 .

[7]  Robert C. Bunker,et al.  Hybrid rocket motor nozzle material predictions and results , 1992 .

[8]  Stephen C. Lubard,et al.  The Turbulent Boundary Layer With Mass Transfer and Pressure Gradient , 1971 .

[9]  Mario A. Storti,et al.  Making curved interfaces straight in phase‐change problems , 1987 .

[10]  Joseph H. Koo,et al.  Supersonic torch facility for ablative testing , 1990 .

[11]  Roy M. Wakefield,et al.  Experimental investigation of a charring ablative material exposed to combined convec- tive and radiative heating in oxidizing and nonoxidizing environments , 1964 .

[12]  S. P. Venkateshan,et al.  Two-Dimensional Ablation in Cylindrical Geometry , 2000 .

[13]  J. Kenny,et al.  Degradation behaviour of a composite material for thermal protection systems Part I–Experimental characterization , 1998 .

[14]  Joseph H. Koo,et al.  3D NPARC flowfield simulation of an ablative test fixture , 1995 .

[15]  Thomas J. Pinnavaia,et al.  Polymer-clay nanocomposites , 2000 .

[16]  Timin Cai,et al.  Simple method for numerical simulation of temperature response of the solid rocket nozzle , 1990 .

[17]  S. T. Keswani,et al.  Validation of an Aerothermochemical Model for Graphite Nozzle Recession and Heat-Transfer Processes , 1986 .

[18]  Darrell Davis Thermal Analysis of the Fastrac Chamber/Nozzle , 2001 .

[19]  Yinan Wu Theory and Numerical Modeling on Thermomechanical Response of Decomposing Composites , 1995 .

[20]  G. Beall,et al.  Development of an Ablative Insulation Material for Ramjet Applications , 2004 .

[21]  Tse-Fou Zien Application of Heat Balance Integral Method to Droplet Freezing in Melting Ablation , 2004 .

[22]  W. D. Henline,et al.  Chemical nonequilibrium Navier-Stokes solutions for hypersonic flow over an ablating graphite nosetip , 1993 .

[23]  N. A. Kimmel Alternate nozzle ablative materials program , 1984 .

[24]  Shan Lin,et al.  A Cost‐Effective Approach to Evaluate High‐Temperature Ablatives for Military Applications , 1992 .

[25]  James M. Russell,et al.  Development of Ablation Sensors for Advanced Reentry Vehicles , 1965 .

[26]  Joseph H. Koo,et al.  Development of a scaled ducted launcher for ablative testing , 1995 .

[27]  J WemimontE 48-inch subscale motor material testing of Space Shuttle advanced solid rocket motor nozzle carbon cloth phenolic ablatives. , 1993 .

[28]  A Bizot,et al.  Turbulent boundary layer with mass transfer and pressure gradient in solid propellant rocket motors , 1995 .

[29]  R. K. Clark,et al.  An analysis of a charring ablator with thermal nonequilibrium, chemical kinetics, and mass transfer , 1973 .

[30]  S. T. Keswani,et al.  A Comprehensive Theoretical Model for Carbon-Carbon Composite Nozzle Recession , 1985 .

[31]  Donald A. Peterson,et al.  Experimental Evaluation of Several Ablative Materials as Nozzle Sections of a Storable-Propellant Rocket Engine. , 1966 .

[32]  Bruce McWhorter,et al.  Real-Time Inhibitor Recession Measurements in Two Space Shuttle Reusable Solid Rocket Motors , 2003 .

[33]  E. Ungar,et al.  Particle Impacts on the Melt Layer of an Ablating Body , 1960 .

[34]  C. T. Boyer,et al.  Development and evaluation of erosion-resistant polymer matrix composite ablators , 1993 .

[35]  J. G. Lane,et al.  An evaluation of ablative materials for a lunar transfer vehicle aerobrake , 1993 .

[36]  V. P. Zabolotskiy,et al.  Mathematical modeling of heat and mass transfer on a catalytic wall in flow of high-enthalpy gas , 1985 .

[37]  S. Balachandar,et al.  Effects of Aluminum Propellant Loading and Size Distribution in BATES Motors: A Multiphysics Computational Analysis , 2005 .

[38]  Ofodike A. Ezekoye,et al.  A Review of Numerical and Experimental Characterization of Thermal Protection Materials - Part II. Properties Characterization , 2007 .

[39]  Frank S. Milos,et al.  Ablation and Thermal Response Program for Spacecraft Heatshield Analysis , 1999 .

[40]  Noriko Katsube,et al.  A CONSTITUTIVE MODEL FOR THERMOMECHANICAL RESPONSE OF DECOMPOSING COMPOSITES UNDER HIGH HEATING RATES , 1996 .

[41]  Joseph H. Koo,et al.  Effect of reinforcements in a silicone resin composite , 1994 .

[42]  J. Kenny,et al.  Degradation behaviour of a composite material for thermal protection systems Part III Char characterization , 2000 .

[43]  Mark E. Ewing,et al.  Real-Time Inhibitor Recession Measurements in the Space Shuttle Reusable Solid Rocket Motors , 2001 .

[44]  G. Springer,et al.  High Temperature Thermomechanical Behavior of Carbon-Phenolic and Carbon-Carbon Composites, I. Analysis , 1992 .

[45]  Bernard Laub New TPS materials for aerocapture , 2002 .

[46]  C. B. Moyer,et al.  An analysis of the coupled chemically reacting boundary layer and charring ablator, part 1 Summary report , 1968 .

[47]  J. B. Henderson,et al.  A Mathematical Model to Predict the Thermal Response of Decomposing, Expanding Polymer Composites , 1987 .

[48]  Pho Nguyen,et al.  3-D flow/thermal analysis of a defect in the RSRM field joint , 1989 .

[49]  Joseph H. Koo,et al.  Comparison of ablative materials in a simulated solid rocket exhaustenvironment , 1991 .

[50]  F. S. Milos,et al.  Two-Dimensional Implicit Thermal Response and Ablation Program for Charring Materials , 2001 .

[51]  Hod Wirzberger,et al.  Prediction of erosion in a solid rocket motor by alumina particles , 2005 .

[52]  Jose Maria Kenny,et al.  Degradation behaviour of a composite material for thermal protection systemsPart II Process simulation , 1998 .

[53]  G. B. Hardy Space Shuttle solid rocket booster , 1979 .

[54]  Joseph H. Koo,et al.  Effects of major constituents on the performance of silicone polymer composite , 1998 .

[55]  Michael T. Heath,et al.  Advanced Simulation of Solid Propellant Rockets from First Principles , 2005 .

[56]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[57]  W. F. S. Tam,et al.  ASRM Case Insulation development , 1993 .

[58]  Yang-Cheng Shih,et al.  NUMERICAL STUDY OF THE THERMAL RESPONSE OF HIGH-TEMPERATURE ABLATIVE MATERIALS , 1997 .

[59]  Fan-bill B. Cheung,et al.  Modeling of one-dimensional thermomechanical erosion of high-temperature ablatives , 1993 .

[60]  Douglas Lewis,et al.  Effects of melt-layer formation on ablative materials exposed to highly aluminized rocket motor plumes , 1998 .

[61]  Joseph H. Koo,et al.  Polymer Nanostructured Materials for Propulsion Systems , 2007 .

[62]  Mario A. Storti,et al.  Numerical modeling of ablation phenomena as two-phase Stefan problems , 1995 .

[63]  Joseph H. Koo,et al.  Silicone matrix composites for thermal protection , 1999 .

[64]  S. T. Keswani,et al.  Recession behavior of graphitic nozzles in simulated rocket motors , 1985 .

[65]  C. T. Boyer,et al.  Evaluation of fiber-reinforced composite ablators exposed to a solidrocket motor exhaust , 1992 .

[66]  G. Russell,et al.  Coupled Aeroheating/Ablation Analysis for Missile Configurations , 2002 .

[67]  Jayant S. Sabnis,et al.  Simulation of flow and particle impingement patterns in Titan IV SRM aft closure , 1995 .

[68]  Bing-Chwen Yang,et al.  Numerical Study of Transient Thermal Ablation of High-Temperature Insulation Materials , 2003 .

[69]  Noriko Katsube,et al.  A thermomechanical model for chemically decomposing composites—I. Theory , 1997 .

[70]  R. Harold Whitesides,et al.  APPLICATION OF TWO-PHASE CFD ANALYSIS TO THE EVALUATION OF ASBESTOS-FREE INSULATION IN THE RSRM , 1997 .

[71]  Darrell Davis Thermal analysis of the MC-1 chamber/nozzle , 2001 .

[72]  J. D. Lambert,et al.  Improved Sprayable Insulation , 1992 .

[73]  Larry D. Allred,et al.  Asbestos Free Insulation Development for the Space Shuttle Solid Propellant Rocket Motor (RSRM) , 2000 .

[74]  Richard A. Vaia,et al.  Polymer nanocomposites : synthesis, characterization, and modeling , 2001 .

[75]  Paolo Baiocco,et al.  A coupled thermo-ablative and fluid dynamic analysis for numerical application to solid propellant rockets , 1996 .

[76]  Y. Fabignon Ablation rate calculation of thermal insulations in segmented solid propellant rocket motor , 1993 .

[77]  M. E. Tauber,et al.  Mars Pathfinder Trajectory Based Heating and Ablation Calculations , 1995 .

[78]  W. Henline,et al.  Analysis of hypersonic arcjet flow fields and surface heating of blunt bodies , 1993 .