Computational prediction of homodimerization of the A3 adenosine receptor.

[1]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[2]  Marta Filizola,et al.  The study of G‐protein coupled receptor oligomerization with computational modeling and bioinformatics , 2005, The FEBS journal.

[3]  Michel Bouvier,et al.  Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. , 2005, Trends in pharmacological sciences.

[4]  T. Mielke,et al.  Electron crystallography reveals the structure of metarhodopsin I , 2004, The EMBO journal.

[5]  A. Engel,et al.  The G protein‐coupled receptor rhodopsin in the native membrane , 2004, FEBS letters.

[6]  M. Bouvier,et al.  Roles of G‐protein‐coupled receptor dimerization , 2004, EMBO reports.

[7]  Francesca Fanelli,et al.  Adenosine A2A-Dopamine D2 Receptor-Receptor Heteromerization , 2003, Journal of Biological Chemistry.

[8]  Manfred Burghammer,et al.  Structure of bovine rhodopsin in a trigonal crystal form. , 2003, Journal of molecular biology.

[9]  Kenneth A Jacobson,et al.  Modeling the adenosine receptors: comparison of the binding domains of A2A agonists and antagonists. , 2003, Journal of medicinal chemistry.

[10]  Z. Weng,et al.  ZDOCK: An initial‐stage protein‐docking algorithm , 2003, Proteins.

[11]  Joseph Parello,et al.  Structure-based analysis of GPCR function: evidence for a novel pentameric assembly between the dimeric leukotriene B4 receptor BLT1 and the G-protein. , 2003, Journal of molecular biology.

[12]  A. Engel,et al.  Organization of the G Protein-coupled Receptors Rhodopsin and Opsin in Native Membranes* , 2003, Journal of Biological Chemistry.

[13]  Lei Shi,et al.  The Fourth Transmembrane Segment Forms the Interface of the Dopamine D2 Receptor Homodimer* , 2003, The Journal of Biological Chemistry.

[14]  B. Rost,et al.  Analysing six types of protein-protein interfaces. , 2003, Journal of molecular biology.

[15]  A. Engel,et al.  Atomic-force microscopy: Rhodopsin dimers in native disc membranes , 2003, Nature.

[16]  Marta Filizola,et al.  Prediction of heterodimerization interfaces of G-protein coupled receptors with a new subtractive correlated mutation method. , 2002, Protein engineering.

[17]  Susan R. George,et al.  G-Protein-coupled receptor oligomerization and its potential for drug discovery , 2002, Nature Reviews Drug Discovery.

[18]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[19]  A. Hopkins,et al.  The druggable genome , 2002, Nature Reviews Drug Discovery.

[20]  Kenneth A. Jacobson,et al.  Structural Determinants of A3 Adenosine Receptor Activation: Nucleoside Ligands at the Agonist/Antagonist Boundary , 2002 .

[21]  K. Fuxe,et al.  Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: Implications for striatal neuronal function , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Yoshinori Shichida,et al.  Functional role of internal water molecules in rhodopsin revealed by x-ray crystallography , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[23]  B. Gowen,et al.  Three-dimensional structure of an invertebrate rhodopsin and basis for ordered alignment in the photoreceptor membrane. , 2001, Journal of molecular biology.

[24]  D C Teller,et al.  Advances in determination of a high-resolution three-dimensional structure of rhodopsin, a model of G-protein-coupled receptors (GPCRs). , 2001, Biochemistry.

[25]  H. Nakata,et al.  Heteromeric association creates a P2Y-like adenosine receptor , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[26]  F. Ciruela,et al.  Metabotropic Glutamate 1α and Adenosine A1 Receptors Assemble into Functionally Interacting Complexes* , 2001, The Journal of Biological Chemistry.

[27]  Mario Mellado,et al.  Chemokine receptor homo‐ or heterodimerization activates distinct signaling pathways , 2001, The EMBO journal.

[28]  S. Schulz,et al.  Homo- and Heterodimerization of Somatostatin Receptor Subtypes , 2001, The Journal of Biological Chemistry.

[29]  A. Elcock,et al.  Computer Simulation of Protein−Protein Interactions , 2001 .

[30]  L. Devi,et al.  Oligomerization of opioid receptors with beta 2-adrenergic receptors: a role in trafficking and mitogen-activated protein kinase activation. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J. Tallman Dimerization of G-Protein-Coupled Receptors: Implications for Drug Design and Signaling , 2000, Neuropsychopharmacology.

[32]  Lakshmi A Devi,et al.  Dimerization of G-Protein Coupled Receptors , 2000, Neuropsychopharmacology.

[33]  H. Lother,et al.  AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration , 2000, Nature.

[34]  B. O'dowd,et al.  Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. , 2000, The Journal of biological chemistry.

[35]  E I Canela,et al.  Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[36]  U. Kumar,et al.  Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. , 2000, Science.

[37]  U. Kumar,et al.  Subtypes of the Somatostatin Receptor Assemble as Functional Homo- and Heterodimers* , 2000, The Journal of Biological Chemistry.

[38]  J. Drews Drug discovery: a historical perspective. , 2000, Science.

[39]  Shi V. Liu Debating controversies can enhance creativity , 2000, Nature.

[40]  U. Gether Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. , 2000, Endocrine reviews.

[41]  Yu Tian Wang,et al.  Direct protein–protein coupling enables cross-talk between dopamine D5 and γ-aminobutyric acid A receptors , 2000, Nature.

[42]  G. Demontis,et al.  G protein-linked receptors: pharmacological evidence for the formation of heterodimers. , 1999, The Journal of pharmacology and experimental therapeutics.

[43]  B. O'dowd,et al.  Serotonin 5‐HT1B and 5‐HT1D receptors form homodimers when expressed alone and heterodimers when co‐expressed , 1999, FEBS letters.

[44]  Lakshmi A. Devi,et al.  G-protein-coupled receptor heterodimerization modulates receptor function , 1999, Nature.

[45]  C. Martínez-A,et al.  The chemokine monocyte chemoattractant protein-1 induces functional responses through dimerization of its receptor CCR2. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[46]  C. Chothia,et al.  The atomic structure of protein-protein recognition sites. , 1999, Journal of molecular biology.

[47]  Kenneth A. Jones,et al.  GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2 , 1998, Nature.

[48]  Matthias Keil,et al.  Characterisation of Protein-Ligand Interfaces: Separating Surfaces , 1998 .

[49]  P. Pauwels,et al.  Dimerization of 8-OH-DPAT increases activity at serotonin 5-HT1A receptors , 1998, Naunyn-Schmiedeberg's Archives of Pharmacology.

[50]  L. Devi,et al.  Dimerization of the delta opioid receptor: implication for a role in receptor internalization. , 1997, The Journal of biological chemistry.

[51]  S. Jones,et al.  Analysis of protein-protein interaction sites using surface patches. , 1997, Journal of molecular biology.

[52]  G Cesareni,et al.  Escher: A new docking procedure applied to the reconstruction of protein tertiary structure , 1997, Proteins.

[53]  G. Corsini,et al.  Functional Role of the Third Cytoplasmic Loop in Muscarinic Receptor Dimerization* , 1996, The Journal of Biological Chemistry.

[54]  C. Romano,et al.  Metabotropic Glutamate Receptor 5 Is a Disulfide-linked Dimer* , 1996, The Journal of Biological Chemistry.

[55]  Michel Bouvier,et al.  A Peptide Derived from a β2-Adrenergic Receptor Transmembrane Domain Inhibits Both Receptor Dimerization and Activation* , 1996, The Journal of Biological Chemistry.

[56]  F. Ciruela,et al.  Immunological identification of A1 adenosine receptors in brain cortex , 1995, Journal of neuroscience research.

[57]  B. Roux,et al.  Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[58]  M. Caron,et al.  Phosphorylation and Palmitoylation of the Human D2L Dopamine Receptor in Sf9 Cells , 1994, Journal of neurochemistry.

[59]  M. Caron,et al.  Desensitization, phosphorylation and palmitoylation of the human dopamine D1 receptor. , 1994, European journal of pharmacology.

[60]  M. Caron,et al.  Human serotonin1B receptor expression in Sf9 cells: phosphorylation, palmitoylation, and adenylyl cyclase inhibition. , 1993, Biochemistry.

[61]  Jürgen Brickmann,et al.  A new approach to analysis and display of local lipophilicity/hydrophilicity mapped on molecular surfaces , 1993, J. Comput. Aided Mol. Des..

[62]  A. Brown,et al.  Receptor-effector coupling by G proteins. , 1990, Biochimica et biophysica acta.

[63]  M. L. Connolly Solvent-accessible surfaces of proteins and nucleic acids. , 1983, Science.

[64]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[65]  J. Klco,et al.  C5a Receptor Oligomerization I. DISULFIDE TRAPPING REVEALS OLIGOMERS AND POTENTIAL CONTACT SURFACES IN A G PROTEIN-COUPLED RECEPTOR* , 2003 .

[66]  Carl R. Johnson,et al.  Structural determinants of A(3) adenosine receptor activation: nucleoside ligands at the agonist/antagonist boundary. , 2002, Journal of medicinal chemistry.

[67]  B. O'dowd,et al.  Oligomerization of m- and d-Opioid Receptors , 2000 .

[68]  B. Borowsky,et al.  GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. , 1998, Nature.

[69]  Kolakowski Lf GCRDB: A G-PROTEIN-COUPLED RECEPTOR DATABASE , 1994 .

[70]  H. Berman,et al.  The Protein Data Bank. , 2002, Acta crystallographica. Section D, Biological crystallography.