Learning Wellness Profiles of Users on Social Networks: The Case of Diabetes

[1]  Rumi Chunara,et al.  From the User to the Medium: Neural Profiling Across Web Communities , 2018, ICWSM.

[2]  Rumi Chunara,et al.  Socio-spatial Self-organizing Maps , 2018, Proceedings of the ACM on human-computer interaction.

[3]  Rumi Chunara,et al.  High-resolution Temporal Representations of Alcohol and Tobacco Behaviors from Social Media Data , 2017, Proc. ACM Hum. Comput. Interact..

[4]  Fei Wang,et al.  Wellness Representation of Users in Social Media: Towards Joint Modelling of Heterogeneity and Temporality , 2017, IEEE Transactions on Knowledge and Data Engineering.

[5]  Tat-Seng Chua,et al.  Detecting Stress Based on Social Interactions in Social Networks , 2017, IEEE Transactions on Knowledge and Data Engineering.

[6]  Tat-Seng Chua,et al.  Tweet Can Be Fit , 2017, ACM Trans. Inf. Syst..

[7]  Tat-Seng Chua,et al.  Depression Detection via Harvesting Social Media: A Multimodal Dictionary Learning Solution , 2017, IJCAI.

[8]  Rumi Chunara,et al.  Assessing Behavior Stage Progression From Social Media Data , 2017, CSCW.

[9]  Tat-Seng Chua,et al.  Leveraging Behavioral Factorization and Prior Knowledge for Community Discovery and Profiling , 2017, WSDM.

[10]  Tat-Seng Chua,et al.  Towards organizing health knowledge on community-based health services , 2016, EURASIP J. Bioinform. Syst. Biol..

[11]  Tat-Seng Chua,et al.  From Tweets to Wellness: Wellness Event Detection from Twitter Streams , 2016, AAAI.

[12]  Fuzhen Zhuang,et al.  Heterogeneous Multi-task Semantic Feature Learning for Classification , 2015, CIKM.

[13]  Chul Lee,et al.  Persistent Sharing of Fitness App Status on Twitter , 2015, CSCW.

[14]  Ramesh C. Jain,et al.  Bringing Deep Causality to Multimedia Data Streams , 2015, ACM Multimedia.

[15]  Liqiang Nie,et al.  aMM: Towards adaptive ranking of multi-modal documents , 2015, International Journal of Multimedia Information Retrieval.

[16]  Hui Xiong,et al.  Temporal Phenotyping from Longitudinal Electronic Health Records: A Graph Based Framework , 2015, KDD.

[17]  Jinbo Bi,et al.  Longitudinal LASSO: Jointly Learning Features and Temporal Contingency for Outcome Prediction , 2015, KDD.

[18]  Hisashi Kashima,et al.  Simultaneous Modeling of Multiple Diseases for Mortality Prediction in Acute Hospital Care , 2015, KDD.

[19]  Fei Wang,et al.  LINKAGE: An Approach for Comprehensive Risk Prediction for Care Management , 2015, KDD.

[20]  Luming Zhang,et al.  Multiple Social Network Learning and Its Application in Volunteerism Tendency Prediction , 2015, SIGIR.

[21]  J. Landercasper,et al.  Twitter Social Media is an Effective Tool for Breast Cancer Patient Education and Support: Patient-Reported Outcomes by Survey , 2015, Journal of medical Internet research.

[22]  Enhong Chen,et al.  Exploiting Task-Feature Co-Clusters in Multi-Task Learning , 2015, AAAI.

[23]  Liangyu Chen,et al.  An Unsupervised Framework of Exploring Events on Twitter: Filtering, Extraction and Categorization , 2015, AAAI.

[24]  Sofiane Abbar,et al.  You Tweet What You Eat: Studying Food Consumption Through Twitter , 2014, CHI.

[25]  Qi Li,et al.  User-level psychological stress detection from social media using deep neural network , 2014, ACM Multimedia.

[26]  Chong-Wah Ngo,et al.  Click-through-based Subspace Learning for Image Search , 2014, ACM Multimedia.

[27]  Claire Cardie,et al.  Major Life Event Extraction from Twitter based on Congratulations/Condolences Speech Acts , 2014, EMNLP.

[28]  Hongfang Liu,et al.  Research and applications: MedXN: an open source medication extraction and normalization tool for clinical text , 2014, J. Am. Medical Informatics Assoc..

[29]  Fei Wang,et al.  From micro to macro: data driven phenotyping by densification of longitudinal electronic medical records , 2014, KDD.

[30]  Grace Hui Yang,et al.  FitYou: integrating health profiles to real-time contextual suggestion , 2014, SIGIR.

[31]  Chong-Wah Ngo,et al.  Click-through-based cross-view learning for image search , 2014, SIGIR.

[32]  Eric Eaton,et al.  Online Multi-Task Learning via Sparse Dictionary Optimization , 2014, AAAI.

[33]  Huan Liu,et al.  Online Social Spammer Detection , 2014, AAAI.

[34]  Christopher D. Manning,et al.  SPIED: Stanford Pattern based Information Extraction and Diagnostics , 2014 .

[35]  Ryen W. White,et al.  Seeking and sharing health information online: comparing search engines and social media , 2014, CHI.

[36]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[37]  F. Wolf,et al.  Standards of Medical Care in Diabetes—2016 Abridged for Primary Care Providers , 2016, Clinical Diabetes.

[38]  Alok N. Choudhary,et al.  Real-time disease surveillance using Twitter data: demonstration on flu and cancer , 2013, KDD.

[39]  Xiaoming Zhang,et al.  From Interest to Function: Location Estimation in Social Media , 2013, AAAI.

[40]  Eric Horvitz,et al.  Predicting Depression via Social Media , 2013, ICWSM.

[41]  Mor Naaman,et al.  Fitter with Twitter: Understanding Personal Health and Fitness Activity in Social Media , 2013, ICWSM.

[42]  Fei Wang,et al.  A Framework for Mining Signatures from Event Sequences and Its Applications in Healthcare Data , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Alan D. Lopez,et al.  A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010 , 2012, The Lancet.

[44]  Oren Etzioni,et al.  Open domain event extraction from twitter , 2012, KDD.

[45]  Huan Liu,et al.  Text Analytics in Social Media , 2012, Mining Text Data.

[46]  Jing Liu,et al.  Unsupervised Feature Selection Using Nonnegative Spectral Analysis , 2012, AAAI.

[47]  Hal Daumé,et al.  Learning Task Grouping and Overlap in Multi-task Learning , 2012, ICML.

[48]  Peter N. Robinson,et al.  Deep phenotyping for precision medicine , 2012, Human mutation.

[49]  David M. W. Powers,et al.  Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation , 2011, ArXiv.

[50]  Rajat Raina,et al.  Learning relevance from heterogeneous social network and its application in online targeting , 2011, SIGIR.

[51]  Frank B. Hu,et al.  Globalization of Diabetes , 2011, Diabetes Care.

[52]  Feiping Nie,et al.  Efficient and Robust Feature Selection via Joint ℓ2, 1-Norms Minimization , 2010, NIPS.

[53]  Ali Jalali,et al.  A Dirty Model for Multi-task Learning , 2010, NIPS.

[54]  Ben Taskar,et al.  Joint covariate selection and joint subspace selection for multiple classification problems , 2010, Stat. Comput..

[55]  Xi Chen,et al.  Accelerated Gradient Method for Multi-task Sparse Learning Problem , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[56]  Daniel Jurafsky,et al.  Distant supervision for relation extraction without labeled data , 2009, ACL.

[57]  Yehuda Koren,et al.  Matrix Factorization Techniques for Recommender Systems , 2009, Computer.

[58]  E. Xing,et al.  Statistical Estimation of Correlated Genome Associations to a Quantitative Trait Network , 2009, PLoS genetics.

[59]  Huan Liu,et al.  Spectral feature selection for supervised and unsupervised learning , 2007, ICML '07.

[60]  George Hripcsak,et al.  A temporal constraint structure for extracting temporal information from clinical narrative , 2006, J. Biomed. Informatics.

[61]  Deng Cai,et al.  Laplacian Score for Feature Selection , 2005, NIPS.

[62]  K. Shelley Developing the American Time Use Survey activity classification system , 2005 .

[63]  Y. Ben-Shlomo,et al.  A life course approach to chronic disease epidemiology: conceptual models, empirical challenges and interdisciplinary perspectives. , 2002, International journal of epidemiology.

[64]  Ellen Riloff,et al.  A Bootstrapping Method for Learning Semantic Lexicons using Extraction Pattern Contexts , 2002, EMNLP.

[65]  M. Franz,et al.  The evidence for the effectiveness of medical nutrition therapy in diabetes management. , 2002, Diabetes care.

[66]  G A Colditz,et al.  Impact of overweight on the risk of developing common chronic diseases during a 10-year period. , 2001, Archives of internal medicine.

[67]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[68]  T. Wills,et al.  Stress, social support, and the buffering hypothesis. , 1985, Psychological bulletin.

[69]  Tao Li,et al.  A Joint Local-Global Approach for Medical Terminology Assignment , 2014, MedIR@SIGIR.

[70]  Scott Gaffney,et al.  Learning a Named Entity Tagger from Gazetteers with the Partial Perceptron , 2009, AAAI Spring Symposium: Learning by Reading and Learning to Read.

[71]  Alan R. Aronson,et al.  Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program , 2001, AMIA.

[72]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[73]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .