Strict error bounds for linear solid mechanics problems using a subdomain-based flux-free method

[1]  E. A. W. Maunder,et al.  Recovery of equilibrium on star patches using a partition of unity technique , 2009 .

[2]  Pierre Ladevèze,et al.  Strict upper error bounds on computed outputs of interest in computational structural mechanics , 2008 .

[3]  A. Huerta,et al.  Bounds of functional outputs for parabolic problems. Part II: Bounds of the exact solution , 2008 .

[4]  Pedro Díez,et al.  Bounds of functional outputs for parabolic problems. Part I: Exact bounds of the discontinuous Galerkin time discretization , 2008 .

[5]  Pierre Ladevèze,et al.  Bounds on history‐dependent or independent local quantities in viscoelasticity problems solved by approximate methods , 2007 .

[6]  Pedro Díez,et al.  Goal-oriented error estimation for transient parabolic problems , 2007 .

[7]  E. Stein,et al.  Error controlled hp-adaptive FE and FE-BE methods for variational equalities and inequalities including model adapitivity , 2007 .

[8]  E. Stein,et al.  On the duality of finite element discretization error control in computational Newtonian and Eshelbian mechanics , 2007 .

[9]  Pedro Díez,et al.  Subdomain-based flux-free a posteriori error estimators , 2006 .

[10]  Antonio Huerta,et al.  The computation of bounds for linear-functional outputs of weak solutions to the two-dimensional elasticity equations , 2006 .

[11]  Pierre Ladevèze,et al.  Mastering Calculations in Linear and Nonlinear Mechanics , 2004 .

[12]  M. Paraschivoiu,et al.  Adaptive computations of a posteriori finite element output bounds: a comparison of the “hybrid-flux” approach and the “flux-free” approach , 2004 .

[13]  J. Tinsley Oden,et al.  Verification and validation in computational engineering and science: basic concepts , 2004 .

[14]  Antonio Huerta,et al.  Computing Bounds for Linear Functionals of Exact Weak Solutions to Poisson's Equation , 2004, SIAM J. Numer. Anal..

[15]  Fabio Nobile,et al.  Analysis of a subdomain‐based error estimator for finite element approximations of elliptic problems , 2004 .

[16]  Ricardo H. Nochetto,et al.  Local problems on stars: A posteriori error estimators, convergence, and performance , 2003, Math. Comput..

[17]  J. Oden,et al.  Goal-oriented error estimation and adaptivity for the finite element method , 2001 .

[18]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[19]  Anthony T. Patera,et al.  A flux-free nodal Neumann subproblem approach to output bounds for partial differential equations , 2000 .

[20]  Carsten Carstensen,et al.  Fully Reliable Localized Error Control in the FEM , 1999, SIAM J. Sci. Comput..

[21]  Josep Sarrate,et al.  A POSTERIORI FINITE ELEMENT ERROR BOUNDS FOR NON-LINEAR OUTPUTS OF THE HELMHOLTZ EQUATION , 1999 .

[22]  Serge Prudhomme,et al.  On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .

[23]  J. Peraire,et al.  A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations , 1997 .

[24]  J. Z. Zhu A posteriori error estimation—the relationship between different procedures , 1997 .

[25]  R. Rannacher,et al.  A feed-back approach to error control in finite element methods: application to linear elasticity , 1997 .

[26]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[27]  Leszek Demkowicz,et al.  Adaptive finite elements for flow problems with moving boundaries. part I: Variational principles and a posteriori estimates , 1984 .

[28]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[29]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[30]  Philippe Bouillard,et al.  Adaptive modeling and simulation , 2009 .

[31]  Núria Parés Mariné Error assessment for functional outputs of pde's: bounds and goal-oriented adaptivity , 2005 .

[32]  Anthony T. Patera,et al.  Bounds for Linear–Functional Outputs of Coercive Partial Differential Equations : Local Indicators and Adaptive Refinement , 1998 .

[33]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .