Femtosecond written buried waveguides in silicon

The laser inscription of waveguides into the volume of crystalline silicon is presented. By using sub-ps laser pulses at a wavelength of 1552 nm highly localized light guiding structures with an average diameter ranging from 1 – 3 μm are achieved. The generated waveguides are characterized in terms of mode field distribution, damping losses and permanent refractive index modification. First investigations indicate an induced increase of the refractive index in the order of 10-3 to 10-2. Depending on the applied laser pulse energy single-mode to multimode like propagation behavior can be observed. At optimized processing parameters, the damping losses can be estimated below 3 dB/mm.