Unsupervised analysis of fMRI data using kernel canonical correlation

[1]  Neill W Campbell,et al.  IEEE International Conference on Computer Vision and Pattern Recognition , 2008 .

[2]  J. Driver,et al.  Modulation of visual processing by attention and emotion: windows on causal interactions between human brain regions , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[3]  Janaina Mourão Miranda,et al.  The impact of temporal compression and space selection on SVM analysis of single-subject and multi-subject fMRI data , 2006, NeuroImage.

[4]  John Shawe-Taylor,et al.  A Correlation Approach for Automatic Image Annotation , 2006, ADMA.

[5]  Rainer Goebel,et al.  Information-based functional brain mapping. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[6]  David R. Hardoon,et al.  Semantic models for machine learning , 2006 .

[7]  Janaina Mourão Miranda,et al.  Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data , 2005, NeuroImage.

[8]  Dinggang Shen,et al.  Classifying spatial patterns of brain activity with machine learning methods: Application to lie detection , 2005, NeuroImage.

[9]  Stephen C. Strother,et al.  Support vector machines for temporal classification of block design fMRI data , 2005, NeuroImage.

[10]  G. Rees,et al.  Predicting the orientation of invisible stimuli from activity in human primary visual cortex , 2005, Nature Neuroscience.

[11]  Alice J. O'Toole,et al.  Partially Distributed Representations of Objects and Faces in Ventral Temporal Cortex , 2005, Journal of Cognitive Neuroscience.

[12]  Laurent Thoraval,et al.  Hidden Markov event sequence models: toward unsupervised functional MRI brain mapping. , 2005, Academic radiology.

[13]  John Shawe-Taylor,et al.  Canonical Correlation Analysis: An Overview with Application to Learning Methods , 2004, Neural Computation.

[14]  Tom M. Mitchell,et al.  Learning to Decode Cognitive States from Brain Images , 2004, Machine Learning.

[15]  Stephen M. Smith,et al.  Probabilistic independent component analysis for functional magnetic resonance imaging , 2004, IEEE Transactions on Medical Imaging.

[16]  David R. Hardoon,et al.  KCCA for fMRI Analysis , 2004 .

[17]  Anke Meyer-Bäse,et al.  Model-free functional MRI analysis based on unsupervised clustering , 2004, J. Biomed. Informatics.

[18]  Nicu Sebe,et al.  Evaluation of Salient Point Techniques , 2002, CIVR.

[19]  Jean-Baptiste Poline,et al.  Unsupervised robust nonparametric estimation of the hemodynamic response function for any fMRI experiment , 2003, IEEE Transactions on Medical Imaging.

[20]  Olivier Faugeras,et al.  Dynamical components analysis of fMRI data through kernel PCA , 2003, NeuroImage.

[21]  Hans Knutsson,et al.  Adaptive analysis of fMRI data , 2003, NeuroImage.

[22]  T. Carlson,et al.  Patterns of Activity in the Categorical Representations of Objects , 2003, Journal of Cognitive Neuroscience.

[23]  David D. Cox,et al.  Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex , 2003, NeuroImage.

[24]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2004 .

[25]  Tom M. Mitchell,et al.  Training fMRI Classifiers to Detect Cognitive States across Multiple Human Subjects , 2003, NIPS 2003.

[26]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[27]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[28]  C. Schmid,et al.  Indexing based on scale invariant interest points , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[29]  H. Knutsson,et al.  Detection of neural activity in functional MRI using canonical correlation analysis , 2001, Magnetic resonance in medicine.

[30]  Leslie G. Ungerleider,et al.  Distributed Neural Systems for the Generation of Visual Images , 2000, Neuron.

[31]  Colin Fyfe,et al.  Kernel and Nonlinear Canonical Correlation Analysis , 2000, IJCNN.

[32]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[33]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[34]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[35]  X Hu,et al.  Analysis of functional magnetic resonance imaging data using self‐organizing mapping with spatial connectivity , 1999, Magnetic resonance in medicine.

[36]  Leslie G. Ungerleider,et al.  The Effect of Face Inversion on Activity in Human Neural Systems for Face and Object Perception , 1999, Neuron.

[37]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[38]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[39]  Olivier Faugeras,et al.  Proceedings of the first european conference on Computer vision , 1990, eccv 1990.

[40]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .