Linear‐scaling self‐consistent field methods for large molecules

Over the last decades, linear‐scaling quantum–chemical methods (QM) have become an important tool for studying large molecular systems, so that already with modest computer resources molecules with more than a thousand atoms are well in reach. The key feature of the methods is the reduction of the steep scaling of the computational effort of conventional ab initio schemes to linear while reliability and accuracy of the underlying quantum–chemical approximation is preserved in the most successful schemes. This review gives a brief overview of selected linear‐scaling approaches at the Hartree–Fock and density‐functional theory level with a particular emphasis on density matrix‐based approaches. The focus is not only on energetics, but also on the calculation of molecular properties providing an important link between theory and experiment. In addition, the usefulness of linear‐scaling QM approaches within quantum mechanical/molecular mechanical (QM/MM) hybrid schemes is briefly discussed. WIREs Comput Mol Sci 2013, 3:614–636. doi: 10.1002/wcms.1138

[1]  Christian Ochsenfeld,et al.  Combining the advantages of semi-direct schemes and linear-scaling self-consistent field methods , 2010 .

[2]  Jan Almlöf,et al.  Laplace transform techniques in Mo/ller–Plesset perturbation theory , 1992 .

[3]  R. Ahlrichs,et al.  Efficient molecular numerical integration schemes , 1995 .

[4]  P. Pulay Improved SCF convergence acceleration , 1982 .

[5]  Christian Ochsenfeld,et al.  Linear scaling exchange gradients for Hartree–Fock and hybrid density functional theory , 2000 .

[6]  Martin Head-Gordon,et al.  Hartree-Fock exchange computed using the atomic resolution of the identity approximation. , 2008, The Journal of chemical physics.

[7]  Satoshi Yokojima,et al.  Linear-scaling localized-density-matrix method for the ground and excited states of one-dimensional molecular systems , 1999 .

[8]  Satoshi Yokojima,et al.  Time domain localized-density-matrix method , 1998 .

[9]  Peter J. Knowles,et al.  Improved radial grids for quadrature in molecular density‐functional calculations , 1996 .

[10]  A. Becke A multicenter numerical integration scheme for polyatomic molecules , 1988 .

[11]  R. Mcweeny,et al.  Hartree-Fock Theory with Nonorthogonal Basis Functions , 1959 .

[12]  Trygve Helgaker,et al.  Geometrical derivatives and magnetic properties in atomic-orbital density-based Hartree-Fock theory , 2001 .

[13]  R. Ditchfield,et al.  Self-consistent perturbation theory of diamagnetism , 1974 .

[14]  Martin Head-Gordon,et al.  The tensor properties of energy gradients within a non-orthogonal basis , 1997 .

[15]  Trygve Helgaker,et al.  Hartree–Fock and Kohn–Sham atomic-orbital based time-dependent response theory , 2000 .

[16]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[17]  Christian Ochsenfeld,et al.  Convergence of Electronic Structure with the Size of the QM Region: Example of QM/MM NMR Shieldings. , 2012, Journal of chemical theory and computation.

[18]  Florian Weigend,et al.  A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency , 2002 .

[19]  Adrian J Mulholland,et al.  Modelling enzyme reaction mechanisms, specificity and catalysis. , 2005, Drug discovery today.

[20]  Trygve Helgaker,et al.  The augmented Roothaan-Hall method for optimizing Hartree-Fock and Kohn-Sham density matrices. , 2008, The Journal of chemical physics.

[21]  Jörg Kussmann,et al.  Nuclei-selected NMR shielding calculations: a sublinear-scaling quantum-chemical method. , 2011, The Journal of chemical physics.

[22]  Peter Pulay,et al.  Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules , 1969 .

[23]  Vanderbilt,et al.  Generalization of the density-matrix method to a nonorthogonal basis. , 1994, Physical review. B, Condensed matter.

[24]  Emanuel H. Rubensson,et al.  Assessment of density matrix methods for linear scaling electronic structure calculations , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[25]  John R. Sabin,et al.  On some approximations in applications of Xα theory , 1979 .

[26]  D. Pines,et al.  A dielectric formulation of the many body problem: Application to the free electron gas , 1958 .

[27]  Valéry Weber,et al.  Ab initio linear scaling response theory: electric polarizability by perturbed projection. , 2004, Physical review letters.

[28]  Koji Yasuda,et al.  Accelerating Density Functional Calculations with Graphics Processing Unit. , 2008, Journal of chemical theory and computation.

[29]  M. Challacombe,et al.  Molecular-orbital-free algorithm for excited states in time-dependent perturbation theory. , 2008, The Journal of chemical physics.

[30]  Jan Almlöf,et al.  Elimination of energy denominators in Møller—Plesset perturbation theory by a Laplace transform approach , 1991 .

[31]  Eric Schwegler,et al.  Linear scaling computation of the Fock matrix. III. Formation of the exchange matrix with permutational symmetry , 2000 .

[32]  Peter Pulay,et al.  Localizability of dynamic electron correlation , 1983 .

[33]  E. Davidson The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .

[34]  J. S. Binkley,et al.  Derivative studies in hartree-fock and møller-plesset theories , 2009 .

[35]  Walter Kohn,et al.  Density functional theory for systems of very many atoms , 1995 .

[36]  Christian Ochsenfeld,et al.  Locality and Sparsity of Ab Initio One-Particle Density Matrices and Localized Orbitals , 1998 .

[37]  F. Neese,et al.  Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange , 2009 .

[38]  Yihan Shao,et al.  An improved J matrix engine for density functional theory calculations , 2000 .

[39]  Benny G. Johnson,et al.  Kohn—Sham density-functional theory within a finite basis set , 1992 .

[40]  Curtis L. Janssen,et al.  Multicore challenges and benefits for high performance scientific computing , 2008, Sci. Program..

[41]  Péter R. Surján,et al.  The MP2 energy as a functional of the Hartree–Fock density matrix , 2005 .

[42]  Ivan S Ufimtsev,et al.  Quantum Chemistry on Graphical Processing Units. 3. Analytical Energy Gradients, Geometry Optimization, and First Principles Molecular Dynamics. , 2009, Journal of chemical theory and computation.

[43]  Michael J. Frisch,et al.  A linear scaling method for Hartree–Fock exchange calculations of large molecules , 1996 .

[44]  Peter Pulay,et al.  Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .

[45]  Peter M W Gill,et al.  Self-consistent field calculations of excited states using the maximum overlap method (MOM). , 2008, The journal of physical chemistry. A.

[46]  Elias Rudberg,et al.  Difficulties in applying pure Kohn–Sham density functional theory electronic structure methods to protein molecules , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[47]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[48]  Christian Ochsenfeld,et al.  A convergence study of QM/MM isomerization energies with the selected size of the QM region for peptidic systems. , 2009, The journal of physical chemistry. A.

[49]  Matt Challacombe,et al.  A simplified density matrix minimization for linear scaling self-consistent field theory , 1999 .

[50]  C. W. Murray,et al.  Quadrature schemes for integrals of density functional theory , 1993 .

[51]  Fred G. Gustavson,et al.  Two Fast Algorithms for Sparse Matrices: Multiplication and Permuted Transposition , 1978, TOMS.

[52]  Peter Pulay,et al.  The Fourier transform Coulomb method: Efficient and accurate calculation of the Coulomb operator in a Gaussian basis , 2002 .

[53]  S. C. Rogers,et al.  QUASI: A general purpose implementation of the QM/MM approach and its application to problems in catalysis , 2003 .

[54]  Ian M. Mills,et al.  Force Constants and Dipole-Moment Derivatives of Molecules from Perturbed Hartree-Fock Calculations. I , 1968 .

[55]  Christian Ochsenfeld,et al.  Efficient linear-scaling calculation of response properties: density matrix-based Laplace-transformed coupled-perturbed self-consistent field theory. , 2008, The Journal of chemical physics.

[56]  K. Ruud,et al.  The ab initio calculation of molecular electric, magnetic and geometric properties. , 2011, Physical chemistry chemical physics : PCCP.

[57]  Jörg Kussmann,et al.  A density matrix-based method for the linear-scaling calculation of dynamic second- and third-order properties at the Hartree-Fock and Kohn-Sham density functional theory levels. , 2007, The Journal of chemical physics.

[58]  Joost VandeVondele,et al.  Auxiliary Density Matrix Methods for Hartree-Fock Exchange Calculations. , 2010, Journal of chemical theory and computation.

[59]  Jing Kong,et al.  Fast and accurate Coulomb calculation with Gaussian functions. , 2005, The Journal of chemical physics.

[60]  Frank Neese,et al.  An improvement of the resolution of the identity approximation for the formation of the Coulomb matrix , 2003, J. Comput. Chem..

[61]  Jörg Kussmann,et al.  Density matrix-based variational quantum Monte Carlo providing an asymptotically linear scaling behavior for the local energy , 2007 .

[62]  Paul Sherwood,et al.  Hybrid quantum mechanics/molecular mechanics approaches , 2013 .

[63]  Michael J. Frisch,et al.  Density matrix search using direct inversion in the iterative subspace as a linear scaling alternative to diagonalization in electronic structure calculations , 2003 .

[64]  Spencer R Pruitt,et al.  Fragmentation methods: a route to accurate calculations on large systems. , 2012, Chemical reviews.

[65]  M. Karplus,et al.  How Enzymes Work: Analysis by Modern Rate Theory and Computer Simulations , 2004, Science.

[66]  Florian Weigend,et al.  Seminumerical calculation of the Hartree–Fock exchange matrix: Application to two‐component procedures and efficient evaluation of local hybrid density functionals , 2012, J. Comput. Chem..

[67]  Paweł Sałek,et al.  Linear-scaling formation of Kohn-Sham Hamiltonian: application to the calculation of excitation energies and polarizabilities of large molecular systems. , 2004, The Journal of chemical physics.

[68]  Volker Dyczmons,et al.  No N4-dependence in the calculation of large molecules , 1973 .

[69]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[70]  Eric Schwegler,et al.  Fast assembly of the Coulomb matrix: A quantum chemical tree code , 1996 .

[71]  Gustavo E. Scuseria,et al.  Linear scaling conjugate gradient density matrix search as an alternative to diagonalization for first principles electronic structure calculations , 1997 .

[72]  Peter Pulay,et al.  Accurate molecular integrals and energies using combined plane wave and Gaussian basis sets in molecular electronic structure theory , 2002 .

[73]  R. Friesner,et al.  Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis. , 2005, Annual review of physical chemistry.

[74]  Peter M. W. Gill Density Functional Theory (DFT), Hartree–Fock (HF), and the Self‐consistent Field , 2002 .

[75]  Henry F. Schaefer,et al.  Analytic second derivative techniques for self-consistent-field wave functions. A new approach to the solution of the coupled perturbed hartree-fock equations , 1983 .

[76]  David E. Manolopoulos,et al.  Canonical purification of the density matrix in electronic-structure theory , 1998 .

[77]  Christian Ochsenfeld,et al.  An atomic orbital-based reformulation of energy gradients in second-order Møller-Plesset perturbation theory. , 2008, The Journal of chemical physics.

[78]  A. Szabó,et al.  Modern quantum chemistry : introduction to advanced electronic structure theory , 1982 .

[79]  Joseph E. Subotnik,et al.  Linear scaling density fitting. , 2006, The Journal of chemical physics.

[80]  Martin Head-Gordon,et al.  A J matrix engine for density functional theory calculations , 1996 .

[81]  Jörg Kussmann,et al.  Linear-scaling method for calculating nuclear magnetic resonance chemical shifts using gauge-including atomic orbitals within Hartree-Fock and density-functional theory. , 2007, The Journal of chemical physics.

[82]  Richard A. Friesner,et al.  Solution of the Hartree–Fock equations by a pseudospectral method: Application to diatomic molecules , 1986 .

[83]  G. G. Hall The molecular orbital theory of chemical valency VIII. A method of calculating ionization potentials , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[84]  Marko Marttila,et al.  An Arginine Switch in the Species B Adenovirus Knob Determines High-Affinity Engagement of Cellular Receptor CD46 , 2008, Journal of Virology.

[85]  GuanHua Chen,et al.  Linear‐Scaling Quantum Mechanical Methods for Excited States , 2012 .

[86]  Eric Schwegler,et al.  Linear scaling computation of the Fock matrix. II. Rigorous bounds on exchange integrals and incremental Fock build , 1997 .

[87]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[88]  Peter Pulay,et al.  Gaussian-based first-principles calculations on large systems using the Fourier Transform Coulomb method , 2003 .

[89]  Hernández,et al.  Linear-scaling density-functional-theory technique: The density-matrix approach. , 1996, Physical review. B, Condensed matter.

[90]  Benny G. Johnson,et al.  THE CONTINUOUS FAST MULTIPOLE METHOD , 1994 .

[91]  V. Lebedev,et al.  A QUADRATURE FORMULA FOR THE SPHERE OF THE 131ST ALGEBRAIC ORDER OF ACCURACY , 1999 .

[92]  Guohui Li,et al.  Development of effective quantum mechanical/molecular mechanical (QM/MM) methods for complex biological processes. , 2006, The journal of physical chemistry. B.

[93]  Michael J. Frisch,et al.  Achieving Linear Scaling for the Electronic Quantum Coulomb Problem , 1996, Science.

[94]  Thomas M Henderson,et al.  The ground state correlation energy of the random phase approximation from a ring coupled cluster doubles approach. , 2008, The Journal of chemical physics.

[95]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[96]  G. Scuseria,et al.  A black-box self-consistent field convergence algorithm: One step closer , 2002 .

[97]  H. Senn,et al.  QM/MM Methods for Biological Systems , 2006 .

[98]  Christian Ochsenfeld,et al.  Linear and sublinear scaling formation of Hartree-Fock-type exchange matrices , 1998 .

[99]  Gustavo E Scuseria,et al.  Comparison of self-consistent field convergence acceleration techniques. , 2012, The Journal of chemical physics.

[100]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[101]  Richard A. Friesner,et al.  Solution of self-consistent field electronic structure equations by a pseudospectral method , 1985 .

[102]  Clemens C. J. Roothaan,et al.  New Developments in Molecular Orbital Theory , 1951 .

[103]  Peter Pulay,et al.  Local configuration interaction: An efficient approach for larger molecules , 1985 .

[104]  Paweł Sałek,et al.  Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory. , 2007, The Journal of chemical physics.

[105]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[106]  Jörg Kussmann,et al.  Ab initio NMR spectra for molecular systems with a thousand and more atoms: a linear-scaling method. , 2004, Angewandte Chemie.

[107]  Benny G. Johnson,et al.  A standard grid for density functional calculations , 1993 .

[108]  Trygve Helgaker,et al.  Recent advances in wave function-based methods of molecular-property calculations. , 2012, Chemical reviews.

[109]  R. Bader,et al.  Forces in molecules. , 2007, Faraday discussions.

[110]  Walter Thiel,et al.  QM/MM studies of enzymes. , 2007, Current opinion in chemical biology.

[111]  Trygve Helgaker,et al.  Hartree-Fock and Kohn-Sham time-dependent response theory in a second-quantization atomic-orbital formalism suitable for linear scaling. , 2008, The Journal of chemical physics.

[112]  Bernard R. Brooks,et al.  ENZYME MECHANISMS WITH HYBRID QUANTUM AND MOLECULAR MECHANICAL POTENTIALS.I. THEORETICAL CONSIDERATIONS , 1996 .

[113]  M. Ratner Molecular electronic-structure theory , 2000 .

[114]  Todd J. Martinez,et al.  Graphical Processing Units for Quantum Chemistry , 2008, Computing in Science & Engineering.

[115]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[116]  Trygve Helgaker,et al.  Molecular Electronic-Structure Theory: Helgaker/Molecular Electronic-Structure Theory , 2000 .

[117]  Marco Häser,et al.  Auxiliary basis sets to approximate Coulomb potentials , 1995 .

[118]  D. Truhlar,et al.  Quantum mechanical methods for enzyme kinetics. , 2003, Annual review of physical chemistry.

[119]  F. London,et al.  Théorie quantique des courants interatomiques dans les combinaisons aromatiques , 1937 .

[120]  S. Karna,et al.  Frequency dependent nonlinear optical properties of molecules: Formulation and implementation in the HONDO program , 1991 .

[121]  Yihan Shao,et al.  Curvy steps for density matrix-based energy minimization: Application to large-scale self-consistent-field calculations , 2003 .

[122]  A. Warshel Computer simulations of enzyme catalysis: methods, progress, and insights. , 2003, Annual review of biophysics and biomolecular structure.

[123]  Anders M.N. Niklasson Expansion algorithm for the density matrix , 2002 .

[124]  J. Olsen,et al.  Solution of the large matrix equations which occur in response theory , 1988 .

[125]  Matt Challacombe,et al.  Density matrix perturbation theory. , 2003, Physical review letters.

[126]  Arieh Warshel,et al.  On possible pitfalls in ab initio quantum mechanics/molecular mechanics minimization approaches for studies of enzymatic reactions. , 2005, The journal of physical chemistry. B.

[127]  Barbara Kaltenbacher,et al.  Iterative Solution Methods , 2015, Handbook of Mathematical Methods in Imaging.

[128]  Erwin Schrödinger,et al.  Quantisierung als Eigenwertproblem , 1925 .

[129]  Li,et al.  Density-matrix electronic-structure method with linear system-size scaling. , 1993, Physical review. B, Condensed matter.

[130]  D. Truhlar,et al.  A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. , 2006, The Journal of chemical physics.

[131]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[132]  Paul Adrien Maurice Dirac,et al.  Note on the Interpretation of the Density Matrix in the Many-Electron Problem , 1931, Mathematical Proceedings of the Cambridge Philosophical Society.

[133]  Trygve Helgaker,et al.  Direct optimization of the AO density matrix in Hartree-Fock and Kohn-Sham theories , 2000 .

[134]  Ivan S Ufimtsev,et al.  Quantum Chemistry on Graphical Processing Units. 2. Direct Self-Consistent-Field Implementation. , 2009, Journal of chemical theory and computation.

[135]  Michael J. Frisch,et al.  Direct analytic SCF second derivatives and electric field properties , 1990 .

[136]  Christian Ochsenfeld,et al.  A reformulation of the coupled perturbed self-consistent field equations entirely within a local atomic orbital density matrix-based scheme , 1997 .

[137]  Jan Almlöf,et al.  THE COULOMB OPERATOR IN A GAUSSIAN PRODUCT BASIS , 1995 .

[138]  Koji Yasuda,et al.  Two‐electron integral evaluation on the graphics processor unit , 2008, J. Comput. Chem..

[139]  Martin Head-Gordon,et al.  Derivation and efficient implementation of the fast multipole method , 1994 .

[140]  Yihan Shao,et al.  Efficient evaluation of the Coulomb force in density-functional theory calculations , 2001 .

[141]  Sergei Tretiak,et al.  Representation independent algorithms for molecular response calculations in time-dependent self-consistent field theories. , 2009, The Journal of chemical physics.

[142]  Christian Ochsenfeld,et al.  Quantum-chemical and combined quantum-chemical/molecular-mechanical studies on the stabilization of a twin arginine pair in adenovirus Ad11. , 2010, Angewandte Chemie.

[143]  Christian Ochsenfeld,et al.  Distance-dependent Schwarz-based integral estimates for two-electron integrals: reliable tightness vs. rigorous upper bounds. , 2012, The Journal of chemical physics.

[144]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[145]  Frank Neese,et al.  An overlap fitted chain of spheres exchange method. , 2011, The Journal of chemical physics.

[146]  A. D. McLACHLAN,et al.  Time-Dependent Hartree—Fock Theory for Molecules , 1964 .

[147]  Emanuel H. Rubensson,et al.  Hartree-Fock calculations with linearly scaling memory usage. , 2008, The Journal of chemical physics.

[148]  David A Mazziotti,et al.  Comparison of two genres for linear scaling in density functional theory: purification and density matrix minimization methods. , 2005, The Journal of chemical physics.

[149]  Marco Häser,et al.  Improvements on the direct SCF method , 1989 .

[150]  Walter Thiel,et al.  QM/MM methods for biomolecular systems. , 2009, Angewandte Chemie.

[151]  Marek Sierka,et al.  Fast evaluation of the Coulomb potential for electron densities using multipole accelerated resolution of identity approximation , 2003 .

[152]  Sergio Martí,et al.  Theoretical insights in enzyme catalysis. , 2004, Chemical Society reviews.

[153]  Roland Lindh,et al.  Utilizing high performance computing for chemistry: parallel computational chemistry. , 2010, Physical chemistry chemical physics : PCCP.

[154]  Alexander B. Pacheco Introduction to Computational Chemistry , 2011 .

[155]  R. Mcweeny Some Recent Advances in Density Matrix Theory , 1960 .

[156]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[157]  Robert J. Harrison,et al.  An implementation of RI–SCF on parallel computers , 1997 .

[158]  J. Almlöf,et al.  Integral approximations for LCAO-SCF calculations , 1993 .

[159]  Eric Schwegler,et al.  Linear scaling computation of the Hartree–Fock exchange matrix , 1996 .

[160]  Frederick R. Manby,et al.  Fast Hartree–Fock theory using local density fitting approximations , 2004 .

[161]  Ghosh,et al.  Density-functional theory for time-dependent systems. , 1987, Physical review. A, General physics.

[162]  Ivan S Ufimtsev,et al.  Quantum Chemistry on Graphical Processing Units. 1. Strategies for Two-Electron Integral Evaluation. , 2008, Journal of chemical theory and computation.

[163]  Rick A. Kendall,et al.  The impact of the resolution of the identity approximate integral method on modern ab initio algorithm development , 1997 .

[164]  Anders M. N. Niklasson,et al.  Trace resetting density matrix purification in O(N) self-consistent-field theory , 2003 .

[165]  Richard A. Friesner,et al.  Solution of the Hartree–Fock equations for polyatomic molecules by a pseudospectral method , 1987 .

[166]  V. R. Saunders,et al.  A “Level–Shifting” method for converging closed shell Hartree–Fock wave functions , 1973 .