Shift current bulk photovoltaic effect in polar materials—hybrid and oxide perovskites and beyond

The bulk photovoltaic effect (BPVE) refers to the generation of a steady photocurrent and above-bandgap photovoltage in a single-phase homogeneous material lacking inversion symmetry. The mechanism of BPVE is decidedly different from the typical p–n junction-based photovoltaic mechanism in heterogeneous materials. Recently, there has been renewed interest in ferroelectric materials for solar energy conversion, inspired by the discovery of above-bandgap photovoltages in ferroelectrics, the invention of low bandgap ferroelectric materials and the rapidly improving power conversion efficiency of metal halide perovskites. However, as long as the nature of the BPVE and its dependence on composition and structure remain poorly understood, materials engineering and the realisation of its true potential will be hampered. In this review article, we survey the history, development and recent progress in understanding the mechanisms of BPVE, with a focus on the shift current mechanism, an intrinsic BPVE that is universal to all materials lacking inversion symmetry. In addition to explaining the theory of shift current, materials design opportunities and challenges will be discussed for future applications of the BPVE.

[1]  A. G. Chynoweth,et al.  Surface Space-Charge Layers in Barium Titanate , 1956 .

[2]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[3]  F. S. Chen,et al.  Optically Induced Change of Refractive Indices in LiNbO3 and LiTaO3 , 1969 .

[4]  Alastair M. Glass,et al.  Control of the Susceptibility of Lithium Niobate to Laser‐Induced Refractive Index Changes , 1971 .

[5]  A. Glass,et al.  Optical Rectification by Impurities in Polar Crystals , 1972 .

[6]  Alastair M. Glass,et al.  High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3 , 1974 .

[7]  V. Fridkin,et al.  Photoconductivity in certain ferroelectrics , 1974 .

[8]  A. Glass,et al.  Excited state polarization, bulk photovoltaic effect and the photorefractive effect in electrically polarized media , 1975 .

[9]  Wolfgang Ruppel,et al.  Anomalous photovoltage in BaTiO3 , 1976 .

[10]  H. Arend,et al.  On the preparation of pure, doped and reduced KNbO3 single crystals , 1978 .

[11]  P. Günter,et al.  Photorefractive effects and photocurrents in KNbO3: Fe , 1978 .

[12]  B. Sturman,et al.  REVIEWS OF TOPICAL PROBLEMS: The photogalvanic effect in media lacking a center of symmetry , 1980 .

[13]  Karlsruhe,et al.  Theory of the bulk photovoltaic effect in pure crystals , 1981 .

[14]  P. Hertel,et al.  Investigations of the Photovoltaic Tensor in Doped LiNbO3 , 1982 .

[15]  D. Gookin,et al.  Bulk photovoltaic effect in polyvinylidene fluoride , 1984 .

[16]  S. Roth,et al.  Solitons in polyacetylene , 1987 .

[17]  B. Sturman,et al.  The relation between shift and ballistic currents in the theory of photogalvanic effect , 1988 .

[18]  Levi,et al.  Optical rectification at semiconductor surfaces. , 1992, Physical review letters.

[19]  Zhang,et al.  Resonant nonlinear susceptibility near the GaAs band gap. , 1992, Physical review letters.

[20]  V. Fridkin,et al.  The bulk photovoltaic effect in LiNbO3, crystals under X-ray synchrotron radiation , 1993 .

[21]  Bulk photovoltaic effect of LiNbO3:Fe in the liquid-He temperature range , 1994 .

[22]  Kazuhiro Nonaka,et al.  Bulk Photovoltaic Effect in Reduced/Oxidized Lead Lanthanum Titanate Zirconate Ceramics , 1995 .

[23]  Rocca,et al.  Giant bulk photovoltaic effect under linearly polarized x-ray synchrotron radiation. , 1995, Physical review letters.

[24]  D. Xue,et al.  Chemical bond and nonlinear optical effects of crystals , 1999 .

[25]  Quantum kinetic theory of shift-current electron pumping in semiconductors , 2000, cond-mat/0011206.

[26]  J. Sipe,et al.  Second-order optical response in semiconductors , 2000 .

[27]  Ronald E. Cohen,et al.  Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics , 2000, Nature.

[28]  Photogalvanic effects in heteropolar nanotubes , 2000, Physical review letters.

[29]  [Fe] , 2020, Acta crystallographica. Section C, Crystal structure communications.

[30]  V. Fridkin,et al.  Bulk photovoltaic effect in noncentrosymmetric crystals , 2001 .

[31]  E. Ivchenko,et al.  Conversion of spin into directed electric current in quantum wells. , 2001, Physical review letters.

[32]  G. Abstreiter,et al.  Removal of spin degeneracy in p-SiGe quantum wells demonstrated by spin photocurrents , 2002 .

[33]  D. Côté,et al.  Rectification and shift currents in GaAs , 2002 .

[34]  Takayoshi Kobayashi,et al.  Photovoltaic properties of (Pb,La)(Zr,Ti)O3 films with different crystallographic orientations , 2005 .

[35]  Mark Bieler,et al.  Ultrafast shift and injection currents observed in wurtzite semiconductors via emitted terahertz radiation , 2005 .

[36]  M. Bieler,et al.  Ultrafast spin-polarized electrical currents injected in a strained zinc blende semiconductor by single color pulses , 2005 .

[37]  J. Sipe,et al.  Optical rectification and shift currents in GaAs and GaP response: Below and above the band gap , 2006 .

[38]  Mark Bieler,et al.  Simultaneous generation of shift and injection currents in (110)-grown GaAs /AlGaAs quantum wells , 2006 .

[39]  V. V. Bel'kov,et al.  Spin photocurrents in (110)-grown quantum well structures , 2007 .

[40]  M. Alexe,et al.  Short-circuit photocurrent in epitaxial lead zirconate-titanate thin films , 2007 .

[41]  Klaus Pierz,et al.  Shift currents from symmetry reduction and Coulomb effects in (110)-orientated GaAs/Al0.3Ga0.7As quantum wells , 2007 .

[42]  Ramamoorthy Ramesh,et al.  Photoconductivity in BiFeO3 thin films , 2008 .

[43]  T. Risse,et al.  A combined experimental and theoretical study , 2008 .

[44]  Yung C. Liang,et al.  High efficient photovoltaics in nanoscaled ferroelectric thin films , 2008 .

[45]  D. Plohmann,et al.  Observation of the orbital circular photogalvanic effect , 2009 .

[46]  E. Ivchenko,et al.  Semiclassical theory of the photogalvanic effect in non-centrosymmetric systems , 2009, 0904.1917.

[47]  Junling Wang,et al.  Evidences for the depletion region induced by the polarization of ferroelectric semiconductors , 2009 .

[48]  James F. Scott,et al.  Physics and Applications of Bismuth Ferrite , 2009 .

[49]  S.-W. Cheong,et al.  Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3 , 2009, Science.

[50]  T. K. Bera,et al.  First-principles prediction of an enhanced optical second-harmonic susceptibility of low-dimensional alkali-metal chalcogenides , 2009 .

[51]  Yung C. Liang,et al.  Photovoltaic mechanisms in ferroelectric thin films with the effects of the electrodes and interfaces , 2009 .

[52]  R. Ramesh,et al.  Photovoltaic effects in BiFeO3 , 2009 .

[53]  L. Pintilie,et al.  About the complex relation between short-circuit photocurrent, imprint and polarization in ferroelectric thin films , 2010 .

[54]  D. Kundys,et al.  Light-induced size changes in BiFeO3 crystals. , 2010, Nature materials.

[55]  T. K. Bera,et al.  Soluble semiconductors AAsSe2 (A = Li, Na) with a direct-band-gap and strong second harmonic generation: a combined experimental and theoretical study. , 2010, Journal of the American Chemical Society.

[56]  Kui Yao,et al.  Bulk Photovoltaic Effect at Visible Wavelength in Epitaxial Ferroelectric BiFeO3 Thin Films , 2010, Advanced materials.

[57]  Optical rectification and current injection in unbiased semiconductors , 2010 .

[58]  J. E. Moore,et al.  Confinement-induced berry phase and helicity-dependent photocurrents. , 2009, Physical review letters.

[59]  P Shafer,et al.  Above-bandgap voltages from ferroelectric photovoltaic devices. , 2010, Nature nanotechnology.

[60]  Local-Strain-Induced Charge Carrier Separation and Electronic Structure Modulation in Zigzag ZnO Nanotubes: Role of Built-In Polarization Electric Field , 2011 .

[61]  M. Alexe,et al.  Tip-enhanced photovoltaic effects in bismuth ferrite , 2011 .

[62]  Silvia Licoccia,et al.  Photovoltaic properties of Bi2FeCrO6 epitaxial thin films , 2011 .

[63]  Pulse-shaper-assisted coherent control of shift currents , 2011 .

[64]  Photoexcitation of valley-orbit currents in (111)-oriented silicon metal-oxide-semiconductor field-effect transistors , 2011 .

[65]  Kui Yao,et al.  Evidence of bulk photovoltaic effect and large tensor coefficient in ferroelectric BiFeO 3 thin films , 2011 .

[66]  H. Ryu,et al.  Diode and photocurrent effect in ferroelectric BaTiO3−δ , 2011 .

[67]  Ramamoorthy Ramesh,et al.  Efficient photovoltaic current generation at ferroelectric domain walls. , 2011, Physical review letters.

[68]  H. Yi,et al.  Mechanism of the Switchable Photovoltaic Effect in Ferroelectric BiFeO3 , 2011, Advanced materials.

[69]  M. Alexe Local mapping of generation and recombination lifetime in BiFeO3 single crystals by scanning probe photoinduced transient spectroscopy. , 2012, Nano letters.

[70]  Klaus Sokolowski-Tinten,et al.  Ultrafast photovoltaic response in ferroelectric nanolayers. , 2012, Physical review letters.

[71]  David J. Singh,et al.  Wide bandgap tunability in complex transition metal oxides by site-specific substitution , 2012, Nature Communications.

[72]  S. Young,et al.  First principles calculation of the shift current photovoltaic effect in ferroelectrics. , 2012, Physical review letters.

[73]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[74]  Klaus Pierz,et al.  All-optically induced ultrafast photocurrents: beyond the instantaneous coherent response. , 2012, Physical review letters.

[75]  Fan Zheng,et al.  First-principles calculation of the bulk photovoltaic effect in bismuth ferrite. , 2012, Physical review letters.

[76]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[77]  Theory of the bulk photovoltaic effect in oxides, and first-principles computational design of materials with bulk Dirac points , 2013 .

[78]  Jin Hong Lee,et al.  Single ferroelectric-domain photovoltaic switch based on lateral BiFeO3 cells , 2013 .

[79]  Liyan Wu,et al.  Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials , 2013, Nature.

[80]  Fan Zheng,et al.  Prediction of a linear spin bulk photovoltaic effect in antiferromagnets. , 2013, Physical review letters.

[81]  Marin Alexe,et al.  Role of domain walls in the abnormal photovoltaic effect in BiFeO3 , 2013, Nature Communications.

[82]  J. Even,et al.  Importance of Spin–Orbit Coupling in Hybrid Organic/Inorganic Perovskites for Photovoltaic Applications , 2013 .

[83]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[84]  F. Zheng,et al.  First-Principles Calculation of the Bulk Photovoltaic Effect in CH3NH3PbI3 and CH3NH3PbI3−xClx , 2014 .

[85]  Aron Walsh,et al.  Ferroelectric materials for solar energy conversion: photoferroics revisited , 2014, 1412.6929.

[86]  Giuseppe Gigli,et al.  Elusive Presence of Chloride in Mixed Halide Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[87]  A. L. Tolstikhina,et al.  Giant bulk photovoltaic effect in thin ferroelectricBaTiO3films , 2014 .

[88]  Fenggong Wang,et al.  Band gap engineering strategy via polarization rotation in perovskite ferroelectrics , 2014 .

[89]  S. Meskers,et al.  Bulk photovoltaic effect in an organic polar crystal. , 2014, Chemical communications.

[90]  J. Chu,et al.  Structural phase transition, narrow band gap, and room-temperature ferromagnetism in [KNbO3]1−x[BaNi1/2Nb1/2O3−δ]x ferroelectrics , 2014 .

[91]  T. Elsaesser,et al.  High-field terahertz bulk photovoltaic effect in lithium niobate. , 2014, Physical review letters.

[92]  F. Zheng,et al.  First-principles calculation of the bulk photovoltaic effect in the polar compounds LiAsS2, LiAsSe2, and NaAsSe2. , 2014, The Journal of chemical physics.

[93]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[94]  Paolo Umari,et al.  Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell Applications , 2014, Scientific Reports.

[95]  L. Tan,et al.  Rashba Spin-Orbit Coupling Enhanced Carrier Lifetime in CH₃NH₃PbI₃. , 2015, Nano letters.

[96]  Wei Huang,et al.  Bandgap tuning of multiferroic oxide solar cells , 2014, Nature Photonics.

[97]  D. Ginger,et al.  Impact of microstructure on local carrier lifetime in perovskite solar cells , 2015, Science.

[98]  L. Fu,et al.  Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials. , 2015, Physical review letters.

[99]  Daniel J. Clark,et al.  Hybrid Germanium Iodide Perovskite Semiconductors: Active Lone Pairs, Structural Distortions, Direct and Indirect Energy Gaps, and Strong Nonlinear Optical Properties. , 2015 .

[100]  Fenggong Wang,et al.  First-principles calculation of the bulk photovoltaic effect in KNbO 3 and (K,Ba)(Ni,Nb) O 3 − δ , 2015, 1503.00684.

[101]  Y. Noguchi,et al.  Enhanced photovoltaic currents in strained Fe‐doped LiNbO3 films , 2015 .

[102]  T. Hansen,et al.  Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K. , 2015, Chemical communications.

[103]  T. Morimoto,et al.  Topological aspects of nonlinear excitonic processes in noncentrosymmetric crystals , 2015, 1512.00549.

[104]  Spontaneous Polarization and Bulk Photovoltaic Effect Driven by Polar Discontinuity in LaFeO_{3}/SrTiO_{3} Heterojunctions. , 2016, Physical review letters.

[105]  F. Zheng,et al.  Substantial bulk photovoltaic effect enhancement via nanolayering , 2016, Nature Communications.

[106]  L. Tan,et al.  Enhancement of the Bulk Photovoltaic Effect in Topological Insulators. , 2015, Physical review letters.

[107]  J. Chu,et al.  Investigation of microstructural and optical properties of (K,Ba)(Ni,Nb)O3−δ thin films fabricated by pulsed laser deposition , 2016 .

[108]  T. Morimoto,et al.  Topological nature of nonlinear optical effects in solids , 2015, Science Advances.

[109]  Joel E Moore,et al.  Design principles for shift current photovoltaics , 2015, Nature Communications.