This study sought to investigate whether repetitive transcranial magnetic stimulation (rTMS) could alleviate cognitive dysfunction in SAMP8 mice by reducing cell apoptosis and activating the cAMP/PKA/CREB signalling pathway. A total of 40 SAMP8 mice were randomly assigned to the SAMP8 group (n=20), and rTMS treatment group (rTMS+SAMP8, n=20); additionally, 20 homologous and normal aged SAMR1 mice were used as the control group(n=20). The Morris water maze and Y maze tests were applied to evaluate spatial learning and memory ability. Haematoxylin and eosin (HE) staining and terminal-deoxynucleotidyl transferase-mediated nick end labelling (TUNEL) were used to observe the changes in neurons in the cortex and hippocampus. Western blotting and RT-PCR were used to detect signalling related proteins. rTMS significantly improved spatial learning and memory deficits and morphological abnormalities in the hippocampus region of the hippocampus. In addition, rTMS reduced apoptosis of neurons caused by AD and the expression of pro-apoptotic proteins (Caspase-3 and Bax) and increased the expression of an antiapoptotic protein (Bcl-2). Furthermore, rTMS activated the cAMP/PKA/CREB signalling pathway. These results showed that rTMS could ameliorate cognitive deficits in AD mice by inhibiting apoptosis via activation the cAMP/PKA/CREB signalling pathway.