Approximating Minimum-Cost Connectivity Problems

We survey approximation algorithms of connectivity problems. The survey presented describing various techniques. In the talk the following techniques and results are presented. 1)Outconnectivity: Its well known that there exists a polynomial time algorithm to solve the problems of finding an edge k-outconnected from r subgraph [EDMONDS] and a vertex k-outconnectivity subgraph from r [Frank-Tardos] . We show how to use this to obtain a ratio 2 approximation for the min cost edge k-connectivity problem. 2)The critical cycle theorem of Mader: We state a fundamental theorem of Mader and use it to provide a 1+(k-1)/n ratio approximation for the min cost vertex k-connected subgraph, in the metric case. We also show results for the min power vertex k-connected problem using this lemma. We show that the min power is equivalent to the min-cost case with respect to approximation. 3)Laminarity and uncrossing: We use the well known laminarity of a BFS solution and show a simple new proof due to Ravi et al for Jain's 2 approximation for Steiner network.

[1]  András Frank,et al.  Covering symmetric supermodular functions by graphs , 1999, Math. Program..

[2]  Samir Khuller,et al.  Biconnectivity approximations and graph carvings , 1992, STOC '92.

[3]  Zeev Nutov Approximating Rooted Connectivity Augmentation Problems , 2005, Algorithmica.

[4]  B. M. Waxman New Approximation Algorithms for the Steiner Tree Problem , 1989 .

[5]  Balaji Raghavachari,et al.  A 5/4-approximation algorithm for minimum 2-edge-connectivity , 2003, SODA '03.

[6]  András Frank,et al.  Edge-Connection of Graphs, Digraphs, and Hypergraphs , 2006 .

[7]  Robert Krauthgamer,et al.  Hardness of Approximation for Vertex-Connectivity Network Design Problems , 2002, SIAM J. Comput..

[8]  A. Frank,et al.  An application of submodular flows , 1989 .

[9]  David P. Williamson,et al.  Approximating the smallest k‐edge connected spanning subgraph by LP‐rounding , 2005, SODA '05.

[10]  Tibor Jordán,et al.  On the Optimal Vertex-Connectivity Augmentation , 1995, J. Comb. Theory B.

[11]  Samir Khuller,et al.  Approximating the minimum equivalent digraph , 1994, SODA '94.

[12]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .

[13]  Guy Kortsarz,et al.  Approximating Node Connectivity Problems via Set Covers , 2003, Algorithmica.

[14]  Éva Tardos,et al.  Algorithms for a network design problem with crossing supermodular demands , 2004, Networks.

[15]  Mimmo Parente,et al.  A 2-Approximation Algorithm for Finding an Optimum 3-Vertex-Connected Spanning Subgraph , 1999, J. Algorithms.

[16]  Tibor Jordán,et al.  A Note on the Vertex-Connectivity Augmentation Problem , 1997, J. Comb. Theory, Ser. B.

[17]  Wolfgang Mader On k-con-Critically n-Connected Graphs , 2002, J. Comb. Theory, Ser. B.

[18]  Ran Raz,et al.  A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP , 1997, STOC '97.

[19]  Santosh S. Vempala,et al.  Factor 4/3 approximations for minimum 2-connected subgraphs , 2000, APPROX.

[20]  Joseph Cheriyan,et al.  Approximating Minimum-Size k-Connected Spanning Subgraphs via Matching , 1998, Electron. Colloquium Comput. Complex..

[21]  Zeev Nutov Approximating connectivity augmentation problems , 2005, SODA '05.

[22]  Sudipto Guha,et al.  Approximation algorithms for directed Steiner problems , 1999, SODA '98.

[23]  Bill Jackson,et al.  Independence free graphs and vertex connectivity augmentation , 2001, J. Comb. Theory, Ser. B.

[24]  Guy Kortsarz,et al.  Approximating node connectivity problems via set covers , 2000, APPROX.

[25]  Samir Khuller,et al.  Improved approximation algorithms for uniform connectivity problems , 1995, STOC '95.

[26]  András Frank,et al.  Minimal Edge-Coverings of Pairs of Sets , 1995, J. Comb. Theory B.

[27]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[28]  J. Edmonds Matroid Intersection , 2022 .

[29]  W. Mader Ecken vom Gradn in minimalenn-fach zusammenhängenden Graphen , 1972 .

[30]  Hiroshi Nagamochi,et al.  On the Minimum Local-Vertex-Connectivity Augmentation in Graphs , 2001, ISAAC.

[31]  Zeev Nutov,et al.  On shredders and vertex connectivity augmentation , 2007, J. Discrete Algorithms.

[32]  Guy Kortsarz,et al.  Approximation algorithm for k-node connected subgraphs via critical graphs , 2004, STOC '04.

[33]  David P. Williamson,et al.  An iterative rounding 2-approximation algorithm for the element connectivity problem , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[34]  Kamal Jain,et al.  A Factor 2 Approximation Algorithm for the Generalized Steiner Network Problem , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[35]  Adrian Vetta,et al.  Approximation algorithms for network design with metric costs , 2005, STOC '05.

[36]  Sanjeev Khanna,et al.  Design networks with bounded pairwise distance , 1999, STOC '99.

[37]  Tibor Jordán,et al.  On Rooted Node-Connectivity Problems , 2001, Algorithmica.

[38]  Santosh S. Vempala,et al.  An Approximation Algorithm for the Minimum-Cost k-Vertex Connected Subgraph , 2003, SIAM J. Comput..

[39]  Joseph JáJá,et al.  On the Relationship between the Biconnectivity Augmentation and Traveling Salesman Problems , 1982, Theor. Comput. Sci..

[40]  András Frank Augmenting Graphs to Meet Edge-Connectivity Requirements , 1992, SIAM J. Discret. Math..

[41]  Bill Jackson,et al.  A Near Optimal Algorithm for Vertex Connectivity Augmentation , 2000, ISAAC.

[42]  Santosh S. Vempala,et al.  Network Design via Iterative Rounding of Setpair Relaxations , 2022 .

[43]  Laurence A. Wolsey,et al.  An analysis of the greedy algorithm for the submodular set covering problem , 1982, Comb..

[44]  Akira Nakamura,et al.  Edge-Connectivity Augmentation Problems , 1987, J. Comput. Syst. Sci..