Analytical energy gradients in second-order Mo/ller–Plesset perturbation theory for extended systems

The spin-restricted formulas for the analytical gradients of the second-order Mo/ller–Plesset perturbation (MP2) energy are presented within the framework of ab initio crystal orbital theory of infinite one-dimensional lattices (polymers). The coupled perturbed Hartree–Fock equation for polymers is solved iteratively using the atomic-orbital-based algorithms. The MP2 energy and its gradient contributions are evaluated by the disk-based algorithms with the aid of the two-particle density matrix. The analytical-gradient method at the MP2 level, as well as the analytical first- and second-derivative methods at the Hartree–Fock (HF) level, is applied to calculate the equilibrium structures and harmonic vibrational frequencies of all-trans polyacetylene. The deviations of the calculated frequencies from the observed ones for the in-phase C=C stretching modes are reduced by about 70% on going from HF/6-31G to MP2/6-31G theory.

[1]  S. Suhai Quantum mechanical calculation of the longitudinal elastic modulus and of deviations from Hooke’s law in polyethylene , 1986 .

[2]  D. I. Bower,et al.  The vibrational spectroscopy of polymers: Main index , 1989 .

[3]  H. Shirakawa,et al.  Density of vibrational states in trans-polyene: comparison with the infrared, Raman and neutron spectra of trans-polyacetylene , 1987 .

[4]  H. Schaefer,et al.  Generalization of analytic configuration interaction (CI) gradient techniques for potential energy hypersurfaces, including a solution to the coupled perturbed Hartree–Fock equations for multiconfiguration SCF molecular wave functions , 1982 .

[5]  L. Piela,et al.  Multipole expansion in tight-binding Hartree-Fock calculations for infinite model polymers , 1980 .

[6]  P. Pulay,et al.  Ab initio calculation of force constants and equilibrium geometries in poly-atomic molecules. II. Force constants of water , 1970 .

[7]  C. S. Yannoni,et al.  Molecular Geometry of cis- and trans-Polyacetylene by Nutation NMR Spectroscopy , 1983 .

[8]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[9]  G. Del Re,et al.  Self-Consistent-Field Tight-Binding Treatment of Polymers. I. Infinite Three-Dimensional Case , 1967 .

[10]  H. Shirakawa,et al.  Raman Scattering and Electronic Spectra of Poly(acetylene) , 1973 .

[11]  Z. Rappoport The chemistry of dienes and polyenes , 1997 .

[12]  H. Teramae Study on the behavior of energy convergence in ab initio crystal orbital calculations , 1996 .

[13]  Rodney J. Bartlett,et al.  Second‐order many‐body perturbation‐theory calculations in extended systems , 1996 .

[14]  J. André,et al.  Self‐Consistent Field Theory for the Electronic Structure of Polymers , 1969 .

[15]  Yukio Furukawa,et al.  Spectroscopic studies on doped polyacetylene and β-carotene , 1980 .

[16]  M. Kertész,et al.  Electronic Structure of Polymers , 1982 .

[17]  H. Lischka,et al.  From butadiene to polyacetylene: An ab initio study on the vibrational spectra of polyenes , 1992 .

[18]  T. Shimanouchi,et al.  Crystal Vibrations and Intermolecular Forces of Polymethylene Crystals , 1965 .

[19]  R. Bartlett,et al.  Many-body perturbation theory for quasiparticle energies , 1997 .

[20]  H. Kuzmany,et al.  Optical modes of trans‐polyacetylene , 1981 .

[21]  H. Kuzmany Resonance Raman Scattering from Neutral and Doped Polyacetylene , 1980 .

[22]  Rodney J. Bartlett,et al.  Theory and application of MBPT(3) gradients: The density approach , 1987 .

[23]  G. Zerbi,et al.  A generalization of GF method to crystal vibrations , 1968 .

[24]  H. Villar,et al.  Structure, vibrational spectra, and IR intensities of polyenes from ab initio SCF calculations , 1988 .

[25]  J. G. Fripiat,et al.  Ab initio calculations of the electronic structure of helical polymers , 1984 .

[26]  A. Karpfen,et al.  Ab initio Studies on polymers , 1979 .

[27]  R. Bartlett,et al.  Correlated vibrational frequencies of polymers: MBPT(2) for all-trans polymethineimine , 1998 .

[28]  S. Hirata,et al.  Density functional crystal orbital study on the normal vibrations and phonon dispersion curves of all-trans polyethylene , 1998 .

[29]  S. Hirata,et al.  Density functional crystal orbital study on the normal vibrations of polyacetylene and polymethineimine , 1997 .

[30]  R. Höller,et al.  Cis-trans isomerism in infinite polyacetylenes: an Ab initio study☆ , 1981 .

[31]  M. Kertész,et al.  Ab initio oligomer calculations of dynamic properties of polyacetylene , 1990 .

[32]  Peter Pulay,et al.  Second and third derivatives of variational energy expressions: Application to multiconfigurational self‐consistent field wave functions , 1983 .

[33]  Peter Pulay,et al.  Geometry optimization by direct inversion in the iterative subspace , 1984 .

[34]  R. Clark,et al.  Spectroscopy of advanced materials , 1991 .

[35]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[36]  Y. Yamaguchi,et al.  A New Dimension to Quantum Chemistry: Analytic Derivative Methods in AB Initio Molecular Electronic Structure Theory , 1994 .

[37]  R. Tubino,et al.  Polarized infrared spectra of highly oriented polyacetylenes , 1984 .

[38]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[39]  H. Teramae Abinitio study on the cis–trans energetics of polyacetylene , 1986 .

[40]  J. Gerratt,et al.  Force Constants and Dipole‐Moment Derivatives of Molecules from Perturbed Hartree–Fock Calculations. II. Applications to Limited Basis‐Set SCF–MO Wavefunctions , 1968 .

[41]  T. Yamabe,et al.  Energy gradient in the ab initio Hartree—Fock crystal-orbital formalism of one-dimensional infinite polymers , 1983 .

[42]  Michael J. Frisch,et al.  A direct MP2 gradient method , 1990 .

[43]  R. Amos,et al.  On the efficient evaluation of analytic energy gradients , 1985 .

[44]  S. Suhai Bond alternation in infinite polyene: Peierls distortion reduced by electron correlation , 1983 .

[45]  Michael J. Frisch,et al.  Semi-direct algorithms for the MP2 energy and gradient , 1990 .

[46]  J. Ladik,et al.  Numerical application of the coupled cluster theory with localized orbitals to polymers. I. Total correlation energy per unit cell , 1993 .

[47]  T. Yamabe,et al.  Ab initio studies on the geometrical and vibrational structures of polymers , 1984 .

[48]  S. Suhai Cooperative effects in hydrogen bonding: Fourth‐order many‐body perturbation theory studies of water oligomers and of an infinite water chain as a model for ice , 1994 .

[49]  Robert F. Hout,et al.  Effect of electron correlation on theoretical vibrational frequencies , 1982 .

[50]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[51]  R. Bartlett,et al.  CONVERGENCE BEHAVIOR OF MANY-BODY PERTURBATION THEORY WITH LATTICE SUMMATIONS IN POLYMERS , 1998 .

[52]  S. Suhai Third‐order Møller–Plesset perturbation theory of electron correlation in infinite systems: A comparison of carbon‐ and silicon‐based polymers , 1993 .

[53]  Julia E. Rice,et al.  The elimination of singularities in derivative calculations , 1985 .

[54]  J. Almlöf,et al.  Principles for a direct SCF approach to LICAO–MOab‐initio calculations , 1982 .

[55]  S. Hirata,et al.  Vibrational analyses of trans,trans‐1,3,5,7‐octatetraene and all‐trans‐1,3,5,7,9‐decapentaene based on ab initio molecular orbital calculations and observed infrared and Raman spectra , 1995 .

[56]  A. Szabó,et al.  Modern quantum chemistry : introduction to advanced electronic structure theory , 1982 .

[57]  Michael J. Frisch,et al.  Direct analytic SCF second derivatives and electric field properties , 1990 .

[58]  S. Suhai Perturbation theoretical investigation of electron correlation effects in infinite metallic and semiconducting polymers , 1983 .

[59]  S. Hirata,et al.  Vibrational analyses of trans-polyacetylene based on ab initio second-order Møller-Plesset perturbation calculations of trans-oligoenes , 1995 .

[60]  Henry F. Schaefer,et al.  On the evaluation of analytic energy derivatives for correlated wave functions , 1984 .

[61]  H. Shirakawa,et al.  Infrared Spectra of Poly(acetylene) , 1971 .

[62]  C. Liegener Abinitio calculations of correlation effects in trans‐polyacetylene , 1988 .

[63]  J. Chien Polyacetylene: Chemistry, Physics, and Material Science , 1984 .

[64]  J. Ladik,et al.  Quantum theory of polymers as solids , 1988 .

[65]  Janos Ladik,et al.  Numerical application of the coupled cluster theory with localized orbitals to polymers. IV. Band structure corrections in model systems and polyacetylene , 1997 .

[66]  R. Bartlett,et al.  Convergence of many-body perturbation methods with lattice summations in extended systems , 1997 .

[67]  S. Hirata,et al.  Density-functional crystal orbital study on the structures and energetics of polyacetylene isomers , 1998 .

[68]  S. Suhai Structural and electronic properties of infinite cis and trans polyenes : perturbation theory of electron correlation effects , 1992 .

[69]  Suhai Electron correlation and dimerization in trans-polyacetylene: Many-body perturbation theory versus density-functional methods. , 1995, Physical review. B, Condensed matter.