Rational solvent molecule tuning for high-performance lithium metal battery electrolytes

[1]  Z. Bao,et al.  Steric Effect Tuned Ion Solvation Enabling Stable Cycling of High-Voltage Lithium Metal Battery. , 2021, Journal of the American Chemical Society.

[2]  Jiaqi Huang,et al.  Designing and Demystifying the Lithium Metal Interface toward Highly Reversible Batteries , 2021, Advanced materials.

[3]  Gustavo M. Hobold,et al.  Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes , 2021, Nature Energy.

[4]  Limin Wang,et al.  Interfacial Model Deciphering High‐Voltage Electrolytes for High Energy Density, High Safety, and Fast‐Charging Lithium‐Ion Batteries , 2021, Advanced materials.

[5]  Xiulin Fan,et al.  High-voltage liquid electrolytes for Li batteries: progress and perspectives. , 2021, Chemical Society reviews.

[6]  Siddharth Sundararaman,et al.  Modifying Li+ and Anion Diffusivities in Polyacetal Electrolytes: A Pulsed-Field-Gradient NMR Study of Ion Self-Diffusion , 2021, Chemistry of Materials.

[7]  Chibueze V. Amanchukwu,et al.  Effect of Building Block Connectivity and Ion Solvation on Electrochemical Stability and Ionic Conductivity in Novel Fluoroether Electrolytes , 2021, ACS central science.

[8]  Z. Bao,et al.  Potentiometric Measurement to Probe Solvation Energy and Its Correlation to Lithium Battery Cyclability. , 2021, Journal of the American Chemical Society.

[9]  Ji‐Guang Zhang,et al.  Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries , 2021, Nature Energy.

[10]  Yumin Zhang,et al.  Design Rules for Selecting Fluorinated Linear Organic Solvents for Li Metal Batteries. , 2021, The journal of physical chemistry letters.

[11]  A. Mariani,et al.  Enhanced Li+ Transport in Ionic Liquid-Based Electrolytes Aided by Fluorinated Ethers for Highly Efficient Lithium Metal Batteries with Improved Rate Capability. , 2021, Small methods.

[12]  Yun Jung Lee,et al.  Toward high-performance anodeless batteries based on controlled lithium metal deposition: a review , 2021 .

[13]  David G. Mackanic,et al.  Dual‐Solvent Li‐Ion Solvation Enables High‐Performance Li‐Metal Batteries , 2021, Advanced materials.

[14]  Xinrong Lin,et al.  Fluorinated Bifunctional Solid Polymer Electrolyte Synthesized under Visible Light for Stable Lithium Deposition and Dendrite‐Free All‐Solid‐State Batteries , 2021, Advanced Functional Materials.

[15]  Kyung‐Koo Lee,et al.  Simultaneous Stabilization of the Solid/Cathode Electrolyte Interface in Lithium Metal Batteries by a New Weakly Solvating Electrolyte. , 2021, Small.

[16]  Jeremiah A. Johnson,et al.  Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte , 2021, Nature Energy.

[17]  K. Amine,et al.  Principle in developing novel fluorinated sulfone electrolyte for high voltage lithium-ion batteries , 2021, Energy & Environmental Science.

[18]  Z. Bao,et al.  Efficient Lithium Metal Cycling over a Wide Range of Pressures from an Anion-Derived Solid-Electrolyte Interphase Framework , 2021 .

[19]  Ping Liu,et al.  Tailoring Electrolyte Solvation for Li Metal Batteries Cycled at Ultra-Low Temperature , 2021, Nature Energy.

[20]  Steven R. Denny,et al.  Rapid Interfacial Exchange of Li Ions Dictates High Coulombic Efficiency in Li Metal Anodes , 2021, ACS Energy Letters.

[21]  Ji‐Guang Zhang,et al.  Review—Localized High-Concentration Electrolytes for Lithium Batteries , 2021, Journal of The Electrochemical Society.

[22]  Qiang Zhang,et al.  Atomic Insights into the Fundamental Interactions in Lithium Battery Electrolytes. , 2020, Accounts of chemical research.

[23]  J. Dahn,et al.  Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis , 2020 .

[24]  B. Dunn,et al.  Understanding and applying coulombic efficiency in lithium metal batteries , 2020 .

[25]  Chibueze V. Amanchukwu,et al.  Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries , 2020, Nature Energy.

[26]  Betar M. Gallant,et al.  Li2O Solid Electrolyte Interphase: Probing Transport Properties at the Chemical Potential of Lithium , 2020 .

[27]  A. Manthiram,et al.  Anode‐Free Full Cells: A Pathway to High‐Energy Density Lithium‐Metal Batteries , 2020, Advanced Energy Materials.

[28]  Cyrus S. Rustomji,et al.  Liquefied Gas Electrolytes for Wide-Temperature Lithium Metal Batteries , 2020, ECS Meeting Abstracts.

[29]  Xiulin Fan,et al.  Electrolyte design for Li metal-free Li batteries , 2020, Materials Today.

[30]  Ping Liu,et al.  An All-Fluorinated Ester Electrolyte for Stable High-Voltage Li Metal Batteries Capable of Ultra-Low-Temperature Operation , 2020, ACS Energy Letters.

[31]  Xiaodi Ren,et al.  Advanced Liquid Electrolytes for Rechargeable Li Metal Batteries , 2020, Advanced Functional Materials.

[32]  Chibueze V. Amanchukwu,et al.  A new class of ionically conducting fluorinated ether electrolytes with high electrochemical stability. , 2020, Journal of the American Chemical Society.

[33]  Yi Cui,et al.  Resolving Nanoscopic and Mesoscopic Heterogeneity of Fluorinated Species in Battery Solid-Electrolyte Interphases by Cryogenic Electron Microscopy , 2020 .

[34]  Kristin A. Persson,et al.  Transport in Superconcentrated LiPF6 and LiBF4/Propylene Carbonate Electrolytes , 2019, ACS Energy Letters.

[35]  M. Winter,et al.  Fluorine and Lithium: Ideal Partners for High-Performance Rechargeable Battery Electrolytes. , 2019, Angewandte Chemie.

[36]  Chibueze V. Amanchukwu,et al.  A Dynamic, Electrolyte-Blocking, and Single-Ion-Conductive Network for Stable Lithium-Metal Anodes , 2019, Joule.

[37]  J. Dahn,et al.  Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte , 2019, Nature Energy.

[38]  Hongkyung Lee,et al.  Enabling High-Voltage Lithium-Metal Batteries under Practical Conditions , 2019, Joule.

[39]  Yuki Yamada,et al.  Advances and issues in developing salt-concentrated battery electrolytes , 2019, Nature Energy.

[40]  Hiroshi Senoh,et al.  Mixture of monoglyme-based solvent and lithium Bis(trifluoromethanesulfonyl)amide as electrolyte for lithium ion battery using silicon electrode , 2019, Materials Chemistry and Physics.

[41]  Venkat R. Subramanian,et al.  Pathways for practical high-energy long-cycling lithium metal batteries , 2019, Nature Energy.

[42]  Jun Lu,et al.  Bridging the academic and industrial metrics for next-generation practical batteries , 2019, Nature Nanotechnology.

[43]  Heng Zhang,et al.  Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives. , 2018, Angewandte Chemie.

[44]  B. K. Mandal,et al.  Synthesis and electrochemical properties of partially fluorinated ether solvents for lithium sulfur battery electrolytes , 2018, Journal of Power Sources.

[45]  Jianming Zheng,et al.  Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries , 2018 .

[46]  William L. Jorgensen,et al.  LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands , 2017, Nucleic Acids Res..

[47]  A. Chagnes,et al.  Guidelines to design organic electrolytes for lithium-ion batteries: environmental impact, physicochemical and electrochemical properties , 2017 .

[48]  Ali Eftekhari,et al.  LiFePO4/C nanocomposites for lithium-ion batteries , 2017 .

[49]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[50]  Jianming Zheng,et al.  Anode‐Free Rechargeable Lithium Metal Batteries , 2016 .

[51]  Lynden A. Archer,et al.  Design principles for electrolytes and interfaces for stable lithium-metal batteries , 2016, Nature Energy.

[52]  Rui Zhang,et al.  A Review of Solid Electrolyte Interphases on Lithium Metal Anode , 2015, Advanced science.

[53]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[54]  Sheng-Kwei Song,et al.  Use of ethylene glycol to evaluate gradient performance in gradient‐intensive diffusion MR sequences , 2012, Magnetic resonance in medicine.

[55]  Davy Sinnaeve The Stejskal–Tanner equation generalized for any gradient shape—an overview of most pulse sequences measuring free diffusion , 2012 .

[56]  Oliver Beckstein,et al.  MDAnalysis: A toolkit for the analysis of molecular dynamics simulations , 2011, J. Comput. Chem..

[57]  Orlando Acevedo,et al.  Development of OPLS-AA Force Field Parameters for 68 Unique Ionic Liquids. , 2009, Journal of chemical theory and computation.

[58]  M. Ue,et al.  Physical and Electrolytic Properties of Partially Fluorinated Organic Solvents and Its Application to Secondary Lithium Batteries: Partially Fluorinated Dialkoxyethanes , 2008 .

[59]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[60]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[61]  D. Aurbach,et al.  The Correlation Between Surface Chemistry, Surface Morphology, and Cycling Efficiency of Lithium Electrodes in a Few Polar Aprotic Systems , 1989 .

[62]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[63]  A. Merbach,et al.  A simple multinuclear NMR thermometer , 1982 .