An instrument for studying granular media in low-gravity environment.

A new experimental facility has been designed and constructed to study driven granular media in a low-gravity environment. This versatile instrument, fully automatized, with a modular design based on several interchangeable experimental cells, allows us to investigate research topics ranging from dilute to dense regimes of granular media such as granular gas, segregation, convection, sound propagation, jamming, and rheology-all without the disturbance by gravitational stresses active on Earth. Here, we present the main parameters, protocols, and performance characteristics of the instrument. The current scientific objectives are then briefly described and, as a proof of concept, some first selected results obtained in low gravity during parabolic flight campaigns are presented.

[1]  J. Bacri,et al.  Dissipated power within a turbulent flow forced homogeneously by magnetic particles , 2017, 1710.10935.

[2]  S. Wegner,et al.  Cooling of 3D granular gases in microgravity experiments , 2017 .

[3]  T. Pöschel,et al.  Velocity Distribution of a Homogeneously Driven Two-Dimensional Granular Gas. , 2017, Physical review letters.

[4]  T. Shinbrot,et al.  Size Sorting on the Rubble-Pile Asteroid Itokawa. , 2017, Physical review letters.

[5]  M. Hou,et al.  DEM simulation of granular segregation in two-compartment system under zero gravity , 2017, 1701.02484.

[6]  E. Falcon,et al.  Segregation and pattern formation in dilute granular media under microgravity conditions , 2017, npj Microgravity.

[7]  A. Tourin,et al.  Sound velocity fluctuations in confined granular materials: Coarse-graining lengths and elastic heterogeneities , 2016 .

[8]  S. Luding,et al.  Enhanced micropolar model for wave propagation in ordered granular materials , 2016, 1604.04914.

[9]  S. Luding,et al.  Effect of disorder on bulk sound wave speed: a multiscale spectral analysis , 2016 .

[10]  S. Luding Granular matter: So much for the jamming point , 2016 .

[11]  X. Jia,et al.  Probing the effect of particle shape on the rigidity of jammed granular solids with sound speed measurements , 2015 .

[12]  M. Sperl,et al.  Spatial Distributions of Local Elastic Moduli Near the Jamming Transition. , 2015, Physical review letters.

[13]  S. Wegner,et al.  Three-dimensional (3D) experimental realization and observation of a granular gas in microgravity , 2015 .

[14]  N. Vandewalle,et al.  Granular transport in driven granular gas , 2015, The European Physical Journal E.

[15]  N. Vandewalle,et al.  Clustering and segregation in driven granular fluids , 2014, The European Physical Journal E.

[16]  Nishant Kumar,et al.  Memory of jamming–multiscale models for soft and granular matter , 2014, Granular Matter.

[17]  S. Luding,et al.  Free cooling phase-diagram of hard-spheres with short- and long-range interactions , 2014, The European Physical Journal Special Topics.

[18]  N. Vandewalle,et al.  How dynamical clustering triggers Maxwell's demon in microgravity. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  F. Pacheco-Vázquez,et al.  Rebound of a confined granular material: combination of a bouncing ball and a granular damper , 2013, Scientific Reports.

[20]  J. Bacri,et al.  Equation of state of a granular gas homogeneously driven by particle rotations , 2013, 1306.4488.

[21]  U Kornek,et al.  Granular gases of rod-shaped grains in microgravity. , 2013, Physical review letters.

[22]  J. Blum,et al.  Granular convection and the Brazil nut effect in reduced gravity. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  N. Vandewalle,et al.  Dynamical clustering in driven granular gas , 2012 .

[24]  Joshua A Dijksman,et al.  Reynolds pressure and relaxation in a sheared granular system. , 2012, Physical review letters.

[25]  W. Losert,et al.  Granular convection in microgravity. , 2012, Physical review letters.

[26]  Sajjad Hussain Shah,et al.  Irregular Oscillation of Bi-disperse Granular Gas in Cyclic Three Compartments , 2012 .

[27]  P. Evesque,et al.  Directed clustering in driven compartmentalized granular gas systems in zero gravity , 2011 .

[28]  N. Vandewalle,et al.  Dynamical regimes of a granular gas in microgravity : a molecular dynamics study , 2011 .

[29]  R. Behringer,et al.  Jamming by shear , 2011, Nature.

[30]  N. Vandewalle,et al.  Phase transitions in vibrated granular systems in microgravity. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  É. Clément,et al.  Intruder mobility in a vibrated granular packing , 2011, 1106.4963.

[32]  N. Menon,et al.  Particle kinematics in a dilute, three-dimensional, vibration-fluidized granular medium. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  M. Sano,et al.  Experimental study on the kinetics of granular gases under microgravity , 2009, Journal of Fluid Mechanics.

[34]  I. Goldhirsch,et al.  Binary granular gas mixtures: Theory, layering effects and some open questions , 2009 .

[35]  United Kingdom,et al.  Microgravity experiments on the collisional behavior of Saturnian ring particles , 2009, 0908.3424.

[36]  G. Bossis,et al.  Velocity-dependent restitution coefficient and granular cooling in microgravity , 2009 .

[37]  C. Aegerter,et al.  Influence of gravity on a granular Maxwell’s demon experiment , 2009, The European physical journal. E, Soft matter.

[38]  D. Lohse,et al.  Buoyancy driven convection in vertically shaken granular matter: experiment, numerics, and theory , 2008 .

[39]  O. Mouraille,et al.  Sound wave propagation in weakly polydisperse granular materials. , 2008, Ultrasonics.

[40]  G. Maret,et al.  Experimental investigation of the freely cooling granular gas. , 2008, Physical review letters.

[41]  H. Tu,et al.  Temperature oscillations in a compartmentalized bidisperse granular gas. , 2008, Physical review letters.

[42]  D. Maza,et al.  Convection in a vibrated granular layer , 2007 .

[43]  E. Falcon,et al.  Simulations of dense granular gases without gravity with impact-velocity-dependent restitution coefficient , 2007, cond-mat/0703188.

[44]  T. Majmudar,et al.  Jamming transition in granular systems. , 2006, Physical review letters.

[45]  S. Fauve,et al.  Collision statistics in a dilute granular gas fluidized by vibrations in low gravity , 2005, cond-mat/0512304.

[46]  T. Majmudar,et al.  Contact force measurements and stress-induced anisotropy in granular materials , 2005, Nature.

[47]  P. Coussot Rheometry of Pastes, Suspensions, and Granular Materials: Applications in Industry and Environment , 2005 .

[48]  S. Fauve,et al.  Energy and power fluctuations in vibrated granular gases , 2004 .

[49]  D. Goldman,et al.  Crucial role of sidewalls in velocity distributions in quasi-two-dimensional granular gases. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  A. Barrat,et al.  Thermal convection in monodisperse and bidisperse granular gases: a simulation study. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  T. Schwager,et al.  Transient structures in a granular gas. , 2003, Physical review letters.

[52]  G. Bossis,et al.  Granular rheology in zero gravity , 2003, cond-mat/0309146.

[53]  C. Coste,et al.  Low-frequency behavior of beads constrained on a lattice. , 2003, Physical review letters.

[54]  S. Luding,et al.  Cluster growth in two- and three-dimensional granular gases. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  A. Barrat,et al.  A molecular dynamics ‘Maxwell Demon’ experiment for granular mixtures , 2002, cond-mat/0212054.

[56]  B. Meerson,et al.  Onset of thermal convection in a horizontal layer of granular gas. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  M. J. Ruiz-Montero,et al.  Hydrodynamic Maxwell demon in granular systems. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  J M Huntley,et al.  Convection in highly fluidized three-dimensional granular beds. , 2001, Physical review letters.

[59]  Detlef Lohse,et al.  Hysteretic clustering in granular gas , 2001, nlin/0103020.

[60]  Menon,et al.  Velocity fluctuations in a homogeneous 2D granular gas in steady state , 2000, Physical review letters.

[61]  Cordero,et al.  Thermal convection in fluidized granular systems , 2000, Physical review letters.

[62]  Kudrolli,et al.  Non-gaussian velocity distributions in excited granular matter in the absence of clustering , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[63]  H. Herrmann,et al.  Cluster-growth in freely cooling granular media. , 1999, Chaos.

[64]  S. Fauve,et al.  Shape of convective cell in Faraday experiment with fine granular materials , 1999 .

[65]  S. Fauve,et al.  Cluster Formation in a Granular Medium Fluidized by Vibrations in Low Gravity , 1999 .

[66]  J. Eggers Sand as Maxwell's Demon , 1999, cond-mat/9906275.

[67]  J. Urbach,et al.  Velocity distributions and density fluctuations in a granular gas. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[68]  S. Fauve,et al.  Cluster formation, pressure and density measurements in a granular medium fluidized by vibrations , 1999 .

[69]  X. Jia,et al.  Ultrasound Propagation in Externally Stressed Granular Media , 1999 .

[70]  J. Gollub,et al.  Velocity statistics in excited granular media. , 1999, Chaos.

[71]  Stefan Luding,et al.  How to handle the inelastic collapse of a dissipative hard-sphere gas with the TC model , 1998, cond-mat/9810009.

[72]  S. Luding,et al.  Energy flows in vibrated granular media , 1998, cond-mat/9805250.

[73]  H. Pak,et al.  CONVECTION AND SIZE SEGREGATION IN A COUETTE FLOW OF GRANULAR MATERIAL , 1997 .

[74]  H. Jaeger,et al.  Granular solids, liquids, and gases , 1996 .

[75]  T. Pöschel,et al.  The granular phase diagram , 1996, cond-mat/9609096.

[76]  P. Umbanhowar,et al.  Transition to parametric wave patterns in a vertically oscillated granular layer. , 1994, Physical review letters.

[77]  Sean McNamara,et al.  Hydrodynamic modes of a uniform granular medium , 1993 .

[78]  Pak,et al.  Surface waves in vertically vibrated granular materials. , 1993, Physical review letters.

[79]  Knight,et al.  Vibration-induced size separation in granular media: The convection connection. , 1993, Physical review letters.

[80]  I. Goldhirsch,et al.  Clustering instability in dissipative gases. , 1993, Physical review letters.

[81]  Liu,et al.  Sound in sand. , 1992, Physical review letters.

[82]  Sean McNamara,et al.  Inelastic collapse and clumping in a one-dimensional granular medium , 1992 .

[83]  S. Fauve,et al.  Convective flow of granular masses under vertical vibrations , 1989 .

[84]  S. Fauve,et al.  COLLECTIVE BEHAVIOURS OF GRANULAR MASSES UNDER VERTICAL VIBRATIONS , 1989 .

[85]  Rosato,et al.  Why the Brazil nuts are on top: Size segregation of particulate matter by shaking. , 1987, Physical review letters.

[86]  J. Williams,et al.  The segregation of particulate materials. A review , 1976 .

[87]  S. Wegner,et al.  Free Cooling of a Granular Gas in Three Dimensions , 2018 .

[88]  J. Duran,et al.  Sands, Powders, and Grains , 2000 .

[89]  F. Spahn,et al.  Structures in Planetary Rings— Stability and Gravitational Scattering , 2000 .