A Natural-language-based Visual Query Approach of Uncertain Human Trajectories

Visual querying is essential for interactively exploring massive trajectory data. However, the data uncertainty imposes profound challenges to fulfill advanced analytics requirements. On the one hand, many underlying data does not contain accurate geographic coordinates, e.g., positions of a mobile phone only refer to the regions (i.e., mobile cell stations) in which it resides, instead of accurate GPS coordinates. On the other hand, domain experts and general users prefer a natural way, such as using a natural language sentence, to access and analyze massive movement data. In this paper, we propose a visual analytics approach that can extract spatial-temporal constraints from a textual sentence and support an effective query method over uncertain mobile trajectory data. It is built up on encoding massive, spatially uncertain trajectories by the semantic information of the POls and regions covered by them, and then storing the trajectory documents in text database with an effective indexing scheme. The visual interface facilitates query condition specification, situation-aware visualization, and semantic exploration of large trajectory data. Usage scenarios on real-world human mobility datasets demonstrate the effectiveness of our approach.

[1]  Xiaoru Yuan,et al.  Interactive Visual Discovering of Movement Patterns from Sparsely Sampled Geo-tagged Social Media Data , 2016, IEEE Transactions on Visualization and Computer Graphics.

[2]  Martin Wattenberg,et al.  The Word Tree, an Interactive Visual Concordance , 2008, IEEE Transactions on Visualization and Computer Graphics.

[3]  Thomas Ertl,et al.  VESPa: A Pattern-based Visual Query Language for Event Sequences , 2016, VISIGRAPP.

[4]  Christian S. Jensen,et al.  A benchmark for evaluating moving object indexes , 2008, Proc. VLDB Endow..

[5]  Ross Maciejewski,et al.  VAUD: A Visual Analysis Approach for Exploring Spatio-Temporal Urban Data , 2018, IEEE Transactions on Visualization and Computer Graphics.

[6]  Gennady L. Andrienko,et al.  Visual analytics of movement: An overview of methods, tools and procedures , 2013, Inf. Vis..

[7]  Jo Wood,et al.  Revealing Patterns and Trends of Mass Mobility Through Spatial and Temporal Abstraction of Origin-Destination Movement Data , 2017, IEEE Transactions on Visualization and Computer Graphics.

[8]  Samuel Madden,et al.  TrajStore: An adaptive storage system for very large trajectory data sets , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).

[9]  Katrin Erk,et al.  Vector Space Models of Word Meaning and Phrase Meaning: A Survey , 2012, Lang. Linguistics Compass.

[10]  Maosong Sun,et al.  Punctuation as Implicit Annotations for Chinese Word Segmentation , 2009, CL.

[11]  Dongyu Liu,et al.  SmartAdP: Visual Analytics of Large-scale Taxi Trajectories for Selecting Billboard Locations , 2017, IEEE Transactions on Visualization and Computer Graphics.

[12]  Ye Zhao,et al.  Visualizing Hidden Themes of Taxi Movement with Semantic Transformation , 2014, 2014 IEEE Pacific Visualization Symposium.

[13]  Wei Zeng,et al.  Visualizing Waypoints‐Constrained Origin‐Destination Patterns for Massive Transportation Data , 2016, Comput. Graph. Forum.

[14]  S. Sathya,et al.  A Survey on Spatial Indexing of Trajectories using Adaptive Network R-Tree of Moving Objects in Road Networks , 2014 .

[15]  Xiaoru Yuan,et al.  Visual Analysis of Multiple Route Choices Based on General GPS Trajectories , 2017, IEEE Transactions on Big Data.

[16]  Zhiguang Zhou,et al.  Visual Abstraction of Large Scale Geospatial Origin-Destination Movement Data , 2019, IEEE Transactions on Visualization and Computer Graphics.

[17]  Hujun Bao,et al.  A visual reasoning approach for data-driven transport assessment on urban roads , 2014, 2014 IEEE Conference on Visual Analytics Science and Technology (VAST).

[18]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[19]  Jing Yang,et al.  SemanticTraj: A New Approach to Interacting with Massive Taxi Trajectories , 2017, IEEE Transactions on Visualization and Computer Graphics.

[20]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[21]  Bing Zhou,et al.  Crowd Behavior Evolution With Emotional Contagion in Political Rallies , 2019, IEEE Transactions on Computational Social Systems.

[22]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[23]  Thomas Ertl,et al.  Semantic Enrichment of Movement Behavior with Foursquare–A Visual Analytics Approach , 2015, IEEE Transactions on Visualization and Computer Graphics.

[24]  Cláudio T. Silva,et al.  Visual Exploration of Big Spatio-Temporal Urban Data: A Study of New York City Taxi Trips , 2013, IEEE Transactions on Visualization and Computer Graphics.

[25]  Yalong Yang,et al.  Many-to-Many Geographically-Embedded Flow Visualisation: An Evaluation , 2019, IEEE Transactions on Visualization and Computer Graphics.

[26]  Ross Maciejewski,et al.  Exploring the Sensitivity of Choropleths under Attribute Uncertainty , 2020, IEEE Transactions on Visualization and Computer Graphics.

[27]  Nikola Marković,et al.  Applications of Trajectory Data From the Perspective of a Road Transportation Agency: Literature Review and Maryland Case Study , 2017, IEEE Transactions on Intelligent Transportation Systems.

[28]  Hua Wang,et al.  Crowd Behavior Simulation With Emotional Contagion in Unexpected Multihazard Situations , 2018, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[29]  Walid G. Aref,et al.  Spatio-Temporal Access Methods , 2003, IEEE Data Eng. Bull..

[30]  Mario A. Nascimento,et al.  Towards historical R-trees , 1998, SAC '98.

[31]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[32]  Gennady L. Andrienko,et al.  Analysis of Flight Variability: a Systematic Approach , 2019, IEEE Transactions on Visualization and Computer Graphics.

[33]  Wei Zeng,et al.  Visualizing Interchange Patterns in Massive Movement Data , 2013, Comput. Graph. Forum.

[34]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[35]  Abdeltawab M. Hendawi,et al.  Predictive spatio-temporal queries: a comprehensive survey and future directions , 2012, MobiGIS.

[36]  Yu Zheng,et al.  Trajectory Data Mining , 2015, ACM Trans. Intell. Syst. Technol..

[37]  Menno-Jan Kraak,et al.  New views on multivariable spatio - temporal data : the space time cube expanded , 2005 .

[38]  Ye Zhao,et al.  TrajGraph: A Graph-Based Visual Analytics Approach to Studying Urban Network Centralities Using Taxi Trajectory Data , 2016, IEEE Transactions on Visualization and Computer Graphics.

[39]  Christophe Hurter,et al.  Skeleton-Based Edge Bundling for Graph Visualization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[40]  Jignesh M. Patel,et al.  Indexing Large Trajectory Data Sets With SETI , 2003, CIDR.

[41]  Zbigniew Smoreda,et al.  Spatiotemporal Data from Mobile Phones for Personal Mobility Assessment , 2013 .

[42]  Matt J. Kusner,et al.  From Word Embeddings To Document Distances , 2015, ICML.

[43]  Dieter Pfoser,et al.  Novel Approaches in Query Processing for Moving Object Trajectories , 2000, VLDB 2000.

[44]  Petr Sojka,et al.  Software Framework for Topic Modelling with Large Corpora , 2010 .

[45]  Vania Bogorny,et al.  A model for enriching trajectories with semantic geographical information , 2007, GIS.

[46]  Bolin Ding,et al.  Attraction and Avoidance Detection from Movements , 2013, Proc. VLDB Endow..

[47]  Stefan Müller Arisona,et al.  StreetVizor: Visual Exploration of Human-Scale Urban Forms Based on Street Views , 2018, IEEE Transactions on Visualization and Computer Graphics.

[48]  Menno-Jan Kraak,et al.  The space - time cube revisited from a geovisualization perspective , 2003 .

[49]  Fei-Yue Wang,et al.  A Survey of Traffic Data Visualization , 2015, IEEE Transactions on Intelligent Transportation Systems.

[50]  Xing Xie,et al.  Discovering regions of different functions in a city using human mobility and POIs , 2012, KDD.

[51]  Zoubir Mammeri,et al.  Query processing in mobile environments: a survey and open problems , 2005, First International Conference on Distributed Frameworks for Multimedia Applications.

[52]  Xiaofang Zhou,et al.  Trajectory Indexing and Retrieval , 2011, Computing with Spatial Trajectories.

[53]  Gennady L. Andrienko,et al.  State Transition Graphs for Semantic Analysis of Movement Behaviours , 2018, Inf. Vis..

[54]  Licia Capra,et al.  Urban Computing: Concepts, Methodologies, and Applications , 2014, TIST.

[55]  Jie Li,et al.  Semantics-Space-Time Cube: A Conceptual Framework for Systematic Analysis of Texts in Space and Time , 2020, IEEE Transactions on Visualization and Computer Graphics.

[56]  Ulrik Brandes,et al.  MotionRugs: Visualizing Collective Trends in Space and Time , 2019, IEEE Transactions on Visualization and Computer Graphics.

[57]  Carlos Eduardo Scheidegger,et al.  Nanocubes for Real-Time Exploration of Spatiotemporal Datasets , 2013, IEEE Transactions on Visualization and Computer Graphics.

[58]  Ke Xu,et al.  EventThread: Visual Summarization and Stage Analysis of Event Sequence Data , 2018, IEEE Transactions on Visualization and Computer Graphics.

[59]  Stefano Spaccapietra,et al.  Semantic trajectories modeling and analysis , 2013, CSUR.

[60]  Fabio Porto,et al.  A conceptual view on trajectories , 2008, Data Knowl. Eng..

[61]  Gennady L. Andrienko,et al.  Spatio-temporal aggregation for visual analysis of movements , 2008, 2008 IEEE Symposium on Visual Analytics Science and Technology.

[62]  Hugo Zaragoza,et al.  The Probabilistic Relevance Framework: BM25 and Beyond , 2009, Found. Trends Inf. Retr..

[63]  Kwan-Liu Ma,et al.  Visualizing the Relationship Between Human Mobility and Points of Interest , 2017, IEEE Transactions on Intelligent Transportation Systems.

[64]  Ross Maciejewski,et al.  Visual Analytics of Mobility and Transportation: State of the Art and Further Research Directions , 2017, IEEE Transactions on Intelligent Transportation Systems.

[65]  Lars Kulik,et al.  Location privacy and location-aware computing , 2006 .

[66]  Marios Hadjieleftheriou,et al.  R-Trees - A Dynamic Index Structure for Spatial Searching , 2008, ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems.

[67]  Siyuan Liu,et al.  Visual analysis of route diversity , 2011, 2011 IEEE Conference on Visual Analytics Science and Technology (VAST).

[68]  Thomas Ertl,et al.  Visual Analysis of Movement Behavior Using Web Data for Context Enrichment , 2014, 2014 IEEE Pacific Visualization Symposium.

[69]  Gerard Salton,et al.  On the Specification of Term Values in Automatic Indexing , 1973 .

[70]  George Kollios,et al.  Close pair queries in moving object databases , 2005, GIS '05.

[71]  Bing Zhou,et al.  An Efficient Method of Crowd Aggregation Computation in Public Areas , 2018, IEEE Transactions on Circuits and Systems for Video Technology.

[72]  Qiuju Zhang,et al.  Visual analysis design to support research into movement and use of space in Tallinn: A case study , 2014, Inf. Vis..

[73]  Models of uncertainty in spatial data , 2022 .

[74]  Fabio Crestani,et al.  “Is this document relevant?…probably”: a survey of probabilistic models in information retrieval , 1998, CSUR.

[75]  Hujun Bao,et al.  Adaptively Exploring Population Mobility Patterns in Flow Visualization , 2017, IEEE Transactions on Intelligent Transportation Systems.

[76]  Matthew D. Cooper,et al.  Identification of Temporally Varying Areas of Interest in Long-Duration Eye-Tracking Data Sets , 2019, IEEE Transactions on Visualization and Computer Graphics.

[77]  Amit P. Sheth,et al.  Semantic (Web) Technology In Action: Ontology Driven Information Systems for Search, Integration and Analysis , 2003, IEEE Data Eng. Bull..

[78]  Yanmin Zhu,et al.  A Survey on Trajectory Data Mining: Techniques and Applications , 2016, IEEE Access.

[79]  Kai-Florian Richter,et al.  Semantic trajectory compression: Representing urban movement in a nutshell , 2012, J. Spatial Inf. Sci..