The mesopontine rostromedial tegmental nucleus: A structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta

Prior studies revealed that aversive stimuli and psychostimulant drugs elicit Fos expression in neurons clustered above and behind the interpeduncular nucleus that project strongly to the ventral tegmental area (VTA) and substantia nigra (SN) compacta (C). Other reports suggest that these neurons modulate responses to aversive stimuli. We now designate the region containing them as the “mesopontine rostromedial tegmental nucleus” (RMTg) and report herein on its neuroanatomy. Dense μ‐opioid receptor and somatostatin immunoreactivity characterize the RMTg, as do neurons projecting to the VTA/SNC that are enriched in GAD67 mRNA. Strong inputs to the RMTg arise in the lateral habenula (LHb) and, to a lesser extent, the SN. Other inputs come from the frontal cortex, ventral striatopallidum, extended amygdala, septum, preoptic region, lateral, paraventricular and posterior hypothalamus, zona incerta, periaqueductal gray, intermediate layers of the contralateral superior colliculus, dorsal raphe, mesencephalic, pontine and medullary reticular formation, and the following nuclei: parafascicular, supramammillary, mammillary, ventral lateral geniculate, deep mesencephalic, red, pedunculopontine and laterodorsal tegmental, cuneiform, parabrachial, and deep cerebellar. The RMTg has meager outputs to the forebrain, mainly to the ventral pallidum, preoptic‐lateral hypothalamic continuum, and midline‐intralaminar thalamus, but much heavier outputs to the brainstem, including, most prominently, the VTA/SNC, as noted above, and to medial tegmentum, pedunculopontine and laterodorsal tegmental nuclei, dorsal raphe, and locus ceruleus and subceruleus. The RMTg may integrate multiple forebrain and brainstem inputs in relation to a dominant LHb input. Its outputs to neuromodulatory projection systems likely converge with direct LHb projections to those structures. J. Comp. Neurol. 513:566–596, 2009. © 2009 Wiley‐Liss, Inc.

[1]  L. Heimer,et al.  Theories of basal forebrain organization and the "emotional motor system". , 1996, Progress in brain research.

[2]  J. Fallon,et al.  Catecholamine innervation of the basal forebrain II. Amygdala, suprarhinal cortex and entorhinal cortex , 1978, The Journal of comparative neurology.

[3]  C. Saper,et al.  Pedunculopontine tegmental nucleus of the rat: Cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum , 1987, The Journal of comparative neurology.

[4]  W. Nauta,et al.  Efferent connections of the habenular nuclei in the rat , 1979, The Journal of comparative neurology.

[5]  Gary Aston-Jones,et al.  The iontophoretic application of Fluoro-Gold for the study of afferents to deep brain nuclei , 1988, Brain Research.

[6]  D. Hopkins,et al.  Neural pathways associated with loss of consciousness caused by intracerebral microinjection of GABAA‐active anesthetics , 2007, The European journal of neuroscience.

[7]  T. Jhou Neural mechanisms of freezing and passive aversive behaviors , 2005, The Journal of comparative neurology.

[8]  F. Bloom,et al.  Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  D. Klein Chairman's opening remarks , 1978, Journal de genetique humaine.

[10]  L. Heimer,et al.  New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: The striatopallidal, amygdaloid, and corticopetal components of substantia innominata , 1988, Neuroscience.

[11]  H. Kimura,et al.  The efferent projections of the rat lateral habenular nucleus revealed by the PHA-L anterograde tracing method , 1988, Brain Research.

[12]  M M Mesulam,et al.  Large‐scale neurocognitive networks and distributed processing for attention, language, and memory , 1990, Annals of neurology.

[13]  L. Kubin Carbachol models of REM sleep: recent developments and new directions. , 2001, Archives italiennes de biologie.

[14]  S. Geisler,et al.  Neurotensin antagonist acutely and robustly attenuates locomotion that accompanies stimulation of a neurotensin‐containing pathway from rostrobasal forebrain to the ventral tegmental area , 2006, The European journal of neuroscience.

[15]  T. Curran,et al.  Superinduction of c-fos by nerve growth factor in the presence of peripherally active benzodiazepines. , 1985, Science.

[16]  Thomas E. Scammell,et al.  The sleep switch: hypothalamic control of sleep and wakefulness , 2001, Trends in Neurosciences.

[17]  J. Polak,et al.  Localization of nitric oxide synthase in the adult rat brain. , 1994, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[18]  S. Schulz,et al.  Immunolocalization of two mu-opioid receptor isoforms (MOR1 and MOR1B) in the rat central nervous system , 1997, Neuroscience.

[19]  A. Chaudhuri,et al.  Cellular-resolution activity mapping of the brain using immediate-early gene expression. , 2004, Frontiers in bioscience : a journal and virtual library.

[20]  C. Saper,et al.  Differential expression of orexin receptors 1 and 2 in the rat brain , 2001, The Journal of comparative neurology.

[21]  S. Snyder,et al.  Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase , 1991, Neuron.

[22]  S. Geisler,et al.  Afferents of the ventral tegmental area in the rat‐anatomical substratum for integrative functions , 2005, The Journal of comparative neurology.

[23]  T. Hökfelt,et al.  Immunohistochemical distribution of somatostatin-like immunoreactivity in the central nervous system of the adult rat , 1984, Neuroscience.

[24]  J. Bolam,et al.  Uniform Inhibition of Dopamine Neurons in the Ventral Tegmental Area by Aversive Stimuli , 2004, Science.

[25]  K. Fuxe,et al.  DEMONSTRATION AND MAPPING OUT OF NIGRO-NEOSTRIATAL DOPAMINE NEURONS. , 1964, Life sciences.

[26]  D. S. Zahm,et al.  The evolving theory of basal forebrain functional—anatomical ‘macrosystems’ , 2006, Neuroscience & Biobehavioral Reviews.

[27]  L. Swanson,et al.  A complete protocol for in situ hybridization of messenger RNAs in brain and other tissues with radi , 1989 .

[28]  L. Heimer,et al.  Iontophoretic injection of fluoro-gold and other fluorescent tracers. , 1990, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[29]  S. Ikemoto Dopamine reward circuitry: Two projection systems from the ventral midbrain to the nucleus accumbens–olfactory tubercle complex , 2007, Brain Research Reviews.

[30]  J. Fallon,et al.  Catecholamine innervation of the basal forebrain IV. Topography of the dopamine projection to the basal forebrain and neostriatum , 1978, The Journal of comparative neurology.

[31]  J. Cornwall,et al.  Afferent and efferent connections of the laterodorsal tegmental nucleus in the rat , 1990, Brain Research Bulletin.

[32]  K. Wilcox,et al.  Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmental area of the rat , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  E. Jodo,et al.  Firing of ‘possibly’ cholinergic neurons in the rat laterodorsal tegmental nucleus during sleep and wakefulness , 1992, Brain Research.

[34]  W. Nauta,et al.  Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber‐of‐passage problem , 1977, The Journal of comparative neurology.

[35]  D. S. Zahm,et al.  The patterns of afferent innervation of the core and shell in the “Accumbens” part of the rat ventral striatum: Immunohistochemical detection of retrogradely transported fluoro‐gold , 1993, The Journal of comparative neurology.

[36]  P. Voorn,et al.  Development of Dopamine - Containing Systems in the CNS , 1992 .

[37]  E. Williams,et al.  Ventral striatopallidothalamic projection: IV. Relative involvements of neurochemically distinct subterritories in the ventral pallidum and adjacent parts of the rostroventral forebrain , 1996, The Journal of comparative neurology.

[38]  W. Nauta,et al.  The amygdalostriatal projection in the rat—an anatomical study by anterograde and retrograde tracing methods , 1982, Neuroscience.

[39]  D. S. Zahm,et al.  Specificity in the projection patterns of accumbal core and shell in the rat , 1991, Neuroscience.

[40]  P. Shepard,et al.  Lateral Habenula Stimulation Inhibits Rat Midbrain Dopamine Neurons through a GABAA Receptor-Mediated Mechanism , 2007, The Journal of Neuroscience.

[41]  P. Redgrave,et al.  Nociceptive responses of midbrain dopaminergic neurones are modulated by the superior colliculus in the rat , 2006, Neuroscience.

[42]  John R Martin,et al.  Direct comparison of projections from the central amygdaloid region and nucleus accumbens shell , 1999, The European journal of neuroscience.

[43]  S. J. Shammah-Lagnado,et al.  Organization of ventral tegmental area projections to the ventral tegmental area–nigral complex in the rat , 2008, Neuroscience.

[44]  S. J. Shammah-Lagnado,et al.  Afferent connections of the zona incerta: A horseradish peroxidase study in the rat , 1985, Neuroscience.

[45]  I. Gritti,et al.  GABAergic and other noncholinergic basal forebrain neurons, together with cholinergic neurons, project to the mesocortex and isocortex in the rat , 1997, The Journal of comparative neurology.

[46]  Deanna L. Wallace,et al.  ΔFosB accumulates in a GABAergic cell population in the posterior tail of the ventral tegmental area after psychostimulant treatment , 2005, The European journal of neuroscience.

[47]  M. Marinelli,et al.  Prominent Activation of Brainstem and Pallidal Afferents of the Ventral Tegmental Area by Cocaine , 2008, Neuropsychopharmacology.

[48]  G. Holstege Descending motor pathways and the spinal motor system: limbic and non-limbic components. , 1991, Progress in brain research.

[49]  D. S. Zahm,et al.  Activation of afferents to the ventral tegmental area in response to acute amphetamine: a double‐labelling study , 2007, The European journal of neuroscience.

[50]  G. Holstege,et al.  Amygdaloid projections to the mesencephalon, pons and medulla oblongata in the cat , 1978, Experimental Brain Research.

[51]  B. Wainer,et al.  Afferent projections to the cholinergic pedunculopontine tegmental nucleus and adjacent midbrain extrapyramidal area in the albino rat. I. Retrograde tracing studies , 1992, The Journal of comparative neurology.

[52]  S. J. Shammah-Lagnado,et al.  Afferent connections of the mesencephalic reticular formation: A horseradish peroxidase study in the rat , 1983, Neuroscience.

[53]  J. Sleigh,et al.  Differential Anaesthetic Effects following Microinjection of Thiopentone and Propofol into the Pons of Adult Rats: A Pilot Study , 2005, Anaesthesia and intensive care.

[54]  M. Harrington The Ventral Lateral Geniculate Nucleus and the Intergeniculate Leaflet: Interrelated Structures in the Visual and Circadian Systems , 1997, Neuroscience & Biobehavioral Reviews.

[55]  G. Moruzzi,et al.  Brain stem reticular formation and activation of the EEG. , 1949, Electroencephalography and clinical neurophysiology.

[56]  M. Devor,et al.  Reversible analgesia, atonia, and loss of consciousness on bilateral intracerebral microinjection of pentobarbital , 2001, Pain.

[57]  K. D. Cliffer,et al.  Evidence that Fluoro-Gold can be transported avidly through fibers of passage , 1990, Brain Research.

[58]  B. Wainer,et al.  Ascending projections from the pedunculopontine tegmental nucleus and the adjacent mesopontine tegmentum in the rat , 1988, The Journal of comparative neurology.

[59]  C. Saper,et al.  Hypothalamic Arousal Regions Are Activated during Modafinil-Induced Wakefulness , 2000, The Journal of Neuroscience.

[60]  G Chouvet,et al.  Afferent regulation of locus coeruleus neurons: anatomy, physiology and pharmacology. , 1991, Progress in brain research.

[61]  M. Krauss,et al.  Differential projections from subfields in the lateral preoptic area to the lateral habenular complex of the rat , 2008, The Journal of comparative neurology.

[62]  E. Nestler,et al.  Topographical organization of GABAergic neurons within the ventral tegmental area of the rat , 2007, Synapse.

[63]  S. J. Shammah-Lagnado,et al.  Afferent connections of the parvocellular reticular formation: A horseradish peroxidase study in the rat , 1983, Neuroscience.

[64]  A. Björklund Analysis of neuronal microcircuits and synaptic interactions , 1990 .

[65]  H. Holcomb,et al.  Schizophrenia in translation: the presence of absence: habenular regulation of dopamine neurons and the encoding of negative outcomes. , 2005, Schizophrenia bulletin.

[66]  H. Kimura,et al.  Histochemical mapping of nitric oxide synthase in the rat brain , 1992, Neuroscience.

[67]  D. S. Zahm,et al.  Anatomy of Neuropsychiatry: The New Anatomy of the Basal Forebrain and Its Implications for Neuropsychiatric Illness , 2007 .

[68]  Lars Olson,et al.  Ascending Monoamine Neurons to the Telencephalon and Diencephalon , 1966 .

[69]  T. Curran,et al.  Mapping patterns of c-fos expression in the central nervous system after seizure. , 1987, Science.

[70]  I. Gritti,et al.  Parvalbumin, calbindin, or calretinin in cortically projecting and GABAergic, cholinergic, or glutamatergic basal forebrain neurons of the rat , 2003, The Journal of comparative neurology.

[71]  P. Bard,et al.  The Behaviour of Chronically Decerebrate Cats , 2008 .

[72]  R. Vertes A PHA‐L analysis of ascending projections of the dorsal raphe nucleus in the rat , 1991, The Journal of comparative neurology.

[73]  O. Hikosaka,et al.  Lateral habenula as a source of negative reward signals in dopamine neurons , 2007, Nature.

[74]  G. Aston-Jones,et al.  Locus coeruleus and regulation of behavioral flexibility and attention. , 2000, Progress in brain research.

[75]  R. Vertes,et al.  Projections of the median raphe nucleus in the rat , 1999, The Journal of comparative neurology.

[76]  L. Schmued,et al.  Fluoro-gold: a new fluorescent retrograde axonal tracer with numerous unique properties , 1986, Brain Research.

[77]  C. Saper,et al.  Hypothalamic regulation of sleep and circadian rhythms , 2005, Nature.

[78]  R. Roth,et al.  Telencephalic Projections of the A8 Dopamine Cell Group , 1988, Annals of the New York Academy of Sciences.

[79]  S. Geisler,et al.  Neurotensin afferents of the ventral tegmental area in the rat: [1] re‐examination of their origins and [2] responses to acute psychostimulant and antipsychotic drug administration , 2006, The European journal of neuroscience.

[80]  S. W. Ranson,et al.  THE RÔLE OF THE HYPOTHALAMUS AND MESENCEPHALON IN LOCOMOTION , 1930 .

[81]  J. Siegel,et al.  Activity of dorsal raphe cells across the sleep–waking cycle and during cataplexy in narcoleptic dogs , 2004, The Journal of physiology.

[82]  C. Beddell,et al.  Nitric oxide synthase. Structural studies using anti-peptide antibodies. , 1993, European journal of biochemistry.

[83]  M. Witter,et al.  The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness , 2002, Brain Research Reviews.

[84]  M. Erlander,et al.  Two genes encode distinct glutamate decarboxylases , 1991, Neuron.

[85]  K. Fuxe,et al.  Mapping out of catecholamine and 5-hydroxytryptamine neurons innervating the telencephalon and diencephalon. , 1965, Life sciences.

[86]  P. Winn,et al.  The pedunculopontine tegmental nucleus: Where the striatum meets the reticular formation , 1995, Progress in Neurobiology.

[87]  G. Holstege,et al.  The emotional motor system. , 1992, European journal of morphology.

[88]  David W. Self,et al.  Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments , 1994, Neuron.

[89]  F. Sharp,et al.  Metabolic mapping with cellular resolution: c-fos vs. 2-deoxyglucose. , 1993, Critical reviews in neurobiology.

[90]  M. Trimble,et al.  The Lateral Habenula: No Longer Neglected , 2008, CNS Spectrums.

[91]  James I. Morgan,et al.  Role of ion flux in the control of c-fos expression , 1986, Nature.

[92]  A. R. Cools,et al.  Efferent projections of the retrorubral nucleus to the substantia nigra and ventral tegmental area in cats as shown by anterograde tracing , 1996, Brain Research Bulletin.

[93]  D. S. Zahm,et al.  Glutamatergic Afferents of the Ventral Tegmental Area in the Rat , 2007, The Journal of Neuroscience.

[94]  K. Asin,et al.  Is dopamine involved in the hyperactivity produced by injections of muscimol into the median raphe nucleus? , 1988, Pharmacology Biochemistry and Behavior.

[95]  L. Swanson,et al.  The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat , 1982, Brain Research Bulletin.

[96]  D. Hopkins,et al.  Movement suppression during anesthesia: Neural projections from the mesopontine tegmentum to areas involved in motor control , 2005, The Journal of comparative neurology.

[97]  C. Saper,et al.  A putative flip–flop switch for control of REM sleep , 2006, Nature.