A Lagrange multiplier method for semilinear elliptic state constrained optimal control problems

In this paper we apply an augmented Lagrange method to a class of semilinear elliptic optimal control problems with pointwise state constraints. We show strong convergence of subsequences of the primal variables to a local solution of the original problem as well as weak convergence of the adjoint states and weak* convergence of the multipliers associated to the state constraint. Moreover, we show existence of stationary points in arbitrary small neighborhoods of local solutions of the original problem. Additionally, various numerical results are presented.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  E. Casas Control of an elliptic problem with pointwise state constraints , 1986 .

[3]  P. Toint,et al.  A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds , 1991 .

[4]  E. Casas Boundary control of semilinear elliptic equations with pointwise state constraints , 1993 .

[5]  Nicholas I. M. Gould,et al.  Convergence Properties of an Augmented Lagrangian Algorithm for Optimization with a Combination of General Equality and Linear Constraints , 1996, SIAM J. Optim..

[6]  Robert Michael Lewis,et al.  A Globally Convergent Augmented Lagrangian Pattern Search Algorithm for Optimization with General Constraints and Simple Bounds , 2002, SIAM J. Optim..

[7]  E. Casas,et al.  Error estimates for the finite-element approximation of a semilinear elliptic control problem , 2002 .

[8]  Eduardo Casas,et al.  Second Order Optimality Conditions for Semilinear Elliptic Control Problems with Finitely Many State Constraints , 2001, SIAM J. Control. Optim..

[9]  Kazufumi Ito,et al.  Semi-smooth Newton methods for state-constrained optimal control problems , 2003, Syst. Control. Lett..

[10]  Fredi Tröltzsch,et al.  Optimal Control of PDEs with Regularized Pointwise State Constraints , 2006, Comput. Optim. Appl..

[11]  Karl Kunisch,et al.  Path-following Methods for a Class of Constrained Minimization Problems in Function Space , 2006, SIAM J. Optim..

[12]  Stefan Wendl,et al.  Optimal Control of Partial Differential Equations , 2021, Applied Mathematical Sciences.

[13]  Fredi Tröltzsch,et al.  Sufficient Second-Order Optimality Conditions for Semilinear Control Problems with Pointwise State Constraints , 2008, SIAM J. Optim..

[14]  Arnd Rösch,et al.  On the regularization error of state constrained Neumann control problems , 2008 .

[15]  C. Meyer Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints , 2008 .

[16]  F. Tröltzsch,et al.  On convergence of regularization methods for nonlinear parabolic optimal control problems with control and state constraints , 2008 .

[17]  Arnd Rösch,et al.  Error estimates for the Lavrentiev regularization of elliptic optimal control problems , 2008 .

[18]  Michael Hintermüller,et al.  Moreau-Yosida Regularization in State Constrained Elliptic Control Problems: Error Estimates and Parameter Adjustment , 2009, SIAM J. Numer. Anal..

[19]  Arnd Rösch,et al.  A virtual control concept for state constrained optimal control problems , 2009, Comput. Optim. Appl..

[20]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[21]  Christian Meyer,et al.  Regularization of state-constrained elliptic optimal control problems with nonlocal radiation interface conditions , 2009, Comput. Optim. Appl..

[22]  MICHAEL HINTERMÜLLER,et al.  PDE-Constrained Optimization Subject to Pointwise Constraints on the Control, the State, and Its Derivative , 2009, SIAM J. Optim..

[23]  Anders Logg,et al.  DOLFIN: Automated finite element computing , 2010, TOMS.

[24]  Michael Hinze,et al.  Variational discretization of Lavrentiev-regularized state constrained elliptic optimal control problems , 2010, Comput. Optim. Appl..

[25]  K. Krumbiegel,et al.  SUFFICIENT OPTIMALITY CONDITIONS FOR THE MOREAU-YOSIDA-TYPE REGULARIZATION CONCEPT APPLIED TO SEMILINEAR ELLIPTIC OPTIMAL CONTROL PROBLEMS WITH POINTWISE STATE CONSTRAINTS , 2010 .

[26]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[27]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[28]  Arnd Rösch,et al.  A-posteriori error estimates for optimal control problems with state and control constraints , 2012, Numerische Mathematik.

[29]  Arnd Rösch,et al.  Regularization for semilinear elliptic optimal control problems with pointwise state and control constraints , 2012, Comput. Optim. Appl..

[30]  Anton Schiela,et al.  An interior point method in function space for the efficient solution of state constrained optimal control problems , 2013, Math. Program..

[31]  Michael Hintermüller,et al.  The Length of the Primal-Dual Path in Moreau-Yosida-Based Path-Following Methods for State Constrained Optimal Control , 2014, SIAM J. Optim..

[32]  José Mario Martínez,et al.  Practical augmented Lagrangian methods for constrained optimization , 2014, Fundamentals of algorithms.

[33]  Eduardo Casas,et al.  New regularity results and improved error estimates for optimal control problems with state constraints , 2014 .

[34]  Juan Carlos De Los Reyes,et al.  Numerical PDE-Constrained Optimization , 2015 .

[35]  Michael Ulbrich,et al.  A Self-Concordant Interior Point Approach for Optimal Control with State Constraints , 2015, SIAM J. Optim..

[36]  Christian Kanzow,et al.  An example comparing the standard and safeguarded augmented Lagrangian methods , 2017, Oper. Res. Lett..

[37]  Daniel Wachsmuth,et al.  An augmented Lagrange method for elliptic state constrained optimal control problems , 2018, Comput. Optim. Appl..

[38]  Christian Kanzow,et al.  An Augmented Lagrangian Method for Optimization Problems in Banach Spaces , 2018, SIAM J. Control. Optim..

[39]  Christian Kanzow,et al.  Local and Global Analysis of Multiplier Methods for Constrained Optimization in Banach Spaces , 2019, SIAM J. Control. Optim..