Optimized Explicit Runge-Kutta Schemes for the Spectral Difference Method Applied to Wave Propagation Problems

Explicit Runge-Kutta schemes with large stable step sizes are developed for integration of high order spectral difference spatial discretization on quadrilateral grids. The new schemes permit an effective time step that is substantially larger than the maximum admissible time step of standard explicit Runge-Kutta schemes available in literature. Furthermore, they have a small principal error norm and admit a low-storage implementation. The advantages of the new schemes are demonstrated through application to the Euler equations and the linearized Euler equations.

[1]  Li Wang,et al.  Implicit solution of the unsteady Euler equations for high-order accurate discontinuous Galerkin discretizations , 2006, J. Comput. Phys..

[2]  Antony Jameson,et al.  Spectral Difference Method for Unstructured Grids II: Extension to the Euler Equations , 2007, J. Sci. Comput..

[3]  David I. Ketcheson,et al.  Runge-Kutta methods with minimum storage implementations , 2010, J. Comput. Phys..

[4]  Kurt Busch,et al.  Efficient low-storage Runge-Kutta schemes with optimized stability regions , 2012, J. Comput. Phys..

[5]  Xiaodong Li,et al.  An optimized spectral difference scheme for CAA problems , 2012, J. Comput. Phys..

[6]  Matteo Parsani,et al.  Optimized low-order explicit Runge-Kutta schemes for high- order spectral difference method , 2012 .

[7]  Joachim Schöberl,et al.  A stable high-order Spectral Difference method for hyperbolic conservation laws on triangular elements , 2012, J. Comput. Phys..

[8]  Eli Turkel,et al.  An implicit high-order spectral difference approach for large eddy simulation , 2010, J. Comput. Phys..

[9]  Kurt Busch,et al.  Comparison of Low-Storage Runge-Kutta Schemes for Discontinuous Galerkin Time-Domain Simulations of Maxwell's Equations , 2010 .

[10]  R. Lewis,et al.  Low-storage, Explicit Runge-Kutta Schemes for the Compressible Navier-Stokes Equations , 2000 .

[11]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[12]  G. P. Saraph,et al.  Regions of Stability of , 1992 .

[13]  C. Bogey,et al.  Computation of Flow Noise Using Source Terms in Linearized Euler's Equations , 2000 .

[14]  M. Nallasamy,et al.  High-accuracy large-step explicit Runge-Kutta (HALE-RK) schemes for computational aeroacoustics , 2006, J. Comput. Phys..

[15]  Pierre Sagaut,et al.  Large-eddy simulation for acoustics , 2007 .

[16]  S. S. Collis,et al.  Multi-Model Methods for Optimal Control of Aeroacoustics , 2005 .

[17]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[18]  Z. Wang High-order methods for the Euler and Navier–Stokes equations on unstructured grids , 2007 .

[19]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[20]  Antony Jameson,et al.  Facilitating the Adoption of Unstructured High-Order Methods Amongst a Wider Community of Fluid Dynamicists , 2011 .

[21]  Fernando Reitich,et al.  High-order RKDG Methods for Computational Electromagnetics , 2005, J. Sci. Comput..

[22]  L. Shampine,et al.  Efficiency comparisons of methods for integrating ODEs , 1994 .

[23]  Chris Lacor,et al.  On the Stability and Accuracy of the Spectral Difference Method , 2008, J. Sci. Comput..

[24]  J. M. Sanz-Serna,et al.  Regions of stability, equivalence theorems and the Courant-Friedrichs-Lewy condition , 1986 .

[25]  Antony Jameson,et al.  Towards Computational Flapping Wing Aerodynamics of Realistic Configurations using Spectral Difference Method , 2011 .

[26]  Dimitri J. Mavriplis,et al.  Implicit Solution of the Unsteady Euler Equations for High-Order Accurate Discontinuous Galerkin Discretizations , 2006 .

[27]  W. Habashi,et al.  2N-Storage Low Dissipation and Dispersion Runge-Kutta Schemes for Computational Acoustics , 1998 .

[28]  Rolf Jeltsch,et al.  Largest disk of stability of explicit Runge-Kutta methods , 1978 .

[29]  Willem Hundsdorfer,et al.  Convergence properties of the Runge-Kutta-Chebyshev method , 1990 .

[30]  J. Verwer Explicit Runge-Kutta methods for parabolic partial differential equations , 1996 .

[31]  Antony Jameson,et al.  A Proof of the Stability of the Spectral Difference Method for All Orders of Accuracy , 2010, J. Sci. Comput..

[32]  David I. Ketcheson,et al.  Strong stability preserving runge-kutta and multistep time discretizations , 2011 .

[33]  Matteo Parsani,et al.  VALIDATION AND APPLICATION OF AN HIGH-ORDER SPECTRAL DIFFERENCE METHOD FOR FLOW INDUCED NOISE SIMULATION , 2011 .

[34]  A. Jameson,et al.  Discrete filter operators for large‐eddy simulation using high‐order spectral difference methods , 2013 .

[35]  H. T. Huynh,et al.  A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods , 2007 .

[36]  Wim Desmet,et al.  Optimal Runge-Kutta schemes for discontinuous Galerkin space discretizations applied to wave propagation problems , 2012, J. Comput. Phys..

[38]  Matteo Bernardini,et al.  A general strategy for the optimization of Runge-Kutta schemes for wave propagation phenomena , 2009, J. Comput. Phys..

[39]  Chunlei Liang,et al.  Spectral Dierence Solution of Two-dimensional Unsteady Compressible Micropolar Equations on Moving and Deformable Grids , 2012 .

[40]  E. Fehlberg,et al.  Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems , 1969 .

[41]  T. Colonius,et al.  Computational aeroacoustics: progress on nonlinear problems of sound generation , 2004 .

[42]  Chunlei Liang,et al.  SPECTRAL DIFFERENCE SOLUTION OF INCOMPRESSIBLE FLOW OVER AN INLINE TUBE BUNDLE WITH OSCILLATING CYLINDER , 2012 .