Performing calculations modulo a set of relations is a basictechnique in algebra. For instance, computing the inverse of aninteger modulo a prime integer or computing the inverse of thecomplex number 3 + 2<i>t</i> modulo the relationℓ<sup>2</sup> + 1 = 0. Computing modulo a set<i>S</i> containing more than one relation requiresfrom <i>S</i> to have some mathematical structure. Forinstance, computing the inverse of <i>p</i> =<i>x</i> + <i>y</i> modulo<i>S</i> ={<i>x</i><sup>2</sup> +<i>y</i> +1,<i>y</i><sup>2</sup> +<i>x</i> + 1} is difficult unless one realizes thatthis question is equivalent to computing the inverse of<i>p</i> modulo <i>C</i> ={<i>x</i><sup>4</sup> +2<i>x</i><sup>2</sup> +<i>x</i> + 2,<i>y</i> +<i>x</i><sup>2</sup> + 1}. Indeed, fromthere one can simplify <i>p</i> using<i>y</i> =-<i>x</i><sup>2</sup> - 1 leading to<i>q</i> =-<i>x</i><sup>2</sup> +<i>x</i> - 1 and compute the inverse of<i>q</i> modulo<i>x</i><sup>4</sup> +2<i>x</i><sup>2</sup> +<i>x</i> + 2 (using the extended Euclidean algorithm)leading to -1/2<i>x</i><sup>3</sup> -1/2<i>x</i>. One commonly used mathematical structurefor a set of algebraic relations is that of a<i>Gröbner basis.</i> It is particularly wellsuited for deciding whether a quantity is null or not modulo a setof relations. For inverse computations, the notion of a<i>regular chain</i> is more adequate. For instance,computing the inverse of <i>p</i> =<i>x</i> + <i>y</i> modulo the set<i>C</i> ={<i>y</i><sup>2</sup> -2<i>x</i> +1,<i>x</i><sup>2</sup> -3<i>x</i> + 2}, which is both a Gröbner basisand a regular chain, is easily answered in this latter point ofview. Indeed, it naturally leads to consider the GCD of<i>p</i> and<i>C<inf>y</inf></i> =<i>y</i><sup>2</sup> -2<i>x</i> + 1 modulo the relation<i>C<inf>x</inf></i> =<i>x</i><sup>2</sup> -3<i>x</i> + 2 = 0, which is
[EQUATION]
This shows that <i>p</i> has no inverse if<i>x</i> = 1 and has an inverse (which can be computedand which is -<i>y</i> + 2) if <i>x</i> =2.
[1]
Marc Moreno Maza,et al.
Lifting techniques for triangular decompositions
,
2005,
ISSAC.
[2]
Michael Kalkbrener,et al.
A Generalized Euclidean Algorithm for Computing Triangular Representations of Algebraic Varieties
,
1993,
J. Symb. Comput..
[3]
Marc Moreno Maza,et al.
On the complexity of the D5 principle
,
2005,
SIGS.
[4]
M. M. Maza.
On Triangular Decompositions of Algebraic Varieties
,
2000
.
[5]
Daniel Lazard,et al.
Solving Zero-Dimensional Algebraic Systems
,
1992,
J. Symb. Comput..
[6]
Marc Moreno Maza,et al.
On the Theories of Triangular Sets
,
1999,
J. Symb. Comput..
[7]
Dominique Duval,et al.
About a New Method for Computing in Algebraic Number Fields
,
1985,
European Conference on Computer Algebra.
[8]
Thomas Wolf,et al.
Classification of integrable polynomial vector evolution equations
,
2001,
nlin/0611038.