Functional “Janus” Annulus in Confined Channels

Scattered Au 3D nanoparticles form distinct functional regions with an uncovered internal surface in confined channels, named the "Janus" annulus. Electrochemical impedance spectroscopy responses to the variations in DNA self-assembly and hybridization in the channels decorated by the "Janus" annulus are presented. Single nucleotide mutations are further detected in a linear DNA chain, including terminal base polymorphisms.

[1]  R. Bashir,et al.  Nanopore sensors for nucleic acid analysis. , 2011, Nature nanotechnology.

[2]  Chunsheng Wu,et al.  A novel electrochemical biosensor based on dynamic polymerase-extending hybridization for E. coli O157:H7 DNA detection. , 2009, Talanta.

[3]  L. A. Baker,et al.  Nanopores: a makeover for membranes. , 2008, Nature nanotechnology.

[4]  Reinhard Neumann,et al.  Single conical nanopores displaying pH-tunable rectifying characteristics. manipulating ionic transport with zwitterionic polymer brushes. , 2009, Journal of the American Chemical Society.

[5]  Jonghwa Shin,et al.  Mussel‐Inspired Plasmonic Nanohybrids for Light Harvesting , 2014, Advanced materials.

[6]  Mark E. Orazem,et al.  Electrochemical Impedance Spectroscopy: Orazem/Electrochemical , 2008 .

[7]  R. Bashir,et al.  Solid-State Nanopore Sensors for Nucleic Acid Analysis , 2011 .

[8]  Xu Hou,et al.  A biomimetic asymmetric responsive single nanochannel. , 2010, Journal of the American Chemical Society.

[9]  D. Y. Zhang,et al.  Control of DNA strand displacement kinetics using toehold exchange. , 2009, Journal of the American Chemical Society.

[10]  H. Aburatani,et al.  PNA for one-base differentiating protection of DNA from nuclease and its use for SNPs detection. , 2003, Journal of the American Chemical Society.

[11]  T. G. Drummond,et al.  Electrochemical DNA sensors , 2003, Nature Biotechnology.

[12]  Jin Zhai,et al.  Bioinspired Smart Gating of Nanochannels Toward Photoelectric‐Conversion Systems , 2010, Advanced materials.

[13]  Georg Seelig,et al.  Conditionally fluorescent molecular probes for detecting single base changes in double-stranded DNA. , 2013, Nature chemistry.

[14]  S. Rodrigues,et al.  A review of state-of-charge indication of batteries by means of a.c. impedance measurements , 2000 .

[15]  Z. Siwy,et al.  Engineered voltage-responsive nanopores. , 2010, Chemical Society reviews.

[16]  Yan Xiang,et al.  A Light‐Powered Bio‐Capacitor with Nanochannel Modulation , 2014, Advanced materials.

[17]  Wen-Jie Lan,et al.  Pressure-dependent ion current rectification in conical-shaped glass nanopores. , 2011, Journal of the American Chemical Society.

[18]  I. Szleifer,et al.  Ion transport and molecular organization are coupled in polyelectrolyte-modified nanopores. , 2011, Journal of the American Chemical Society.

[19]  Zeng-Qiang Wu,et al.  Morpholino-functionalized nanochannel array for label-free single nucleotide polymorphisms detection. , 2015, Analytical chemistry.

[20]  Jinghong Li,et al.  Electrochemical detection of DNA immobilized on gold colloid particles modified self-assembled monolayer electrode with silver nanoparticle label. , 2003, Journal of pharmaceutical and biomedical analysis.

[21]  Yong Qiu,et al.  Room Temperature Ionic Liquid Based Polystyrene Nanofibers with Superhydrophobicity and Conductivity Produced by Electrospinning , 2008 .

[22]  K. Gunderson,et al.  A genome-wide scalable SNP genotyping assay using microarray technology , 2005, Nature Genetics.

[23]  Shengbo Zhang A review on the separators of liquid electrolyte Li-ion batteries , 2007 .

[24]  Chad A. Mirkin,et al.  Drivers of biodiagnostic development , 2009, Nature.

[25]  Z. Wen,et al.  Hydroxyl-containing antimony oxide bromide nanorods combined with chitosan for biosensors. , 2006, Biomaterials.

[26]  Lei Jiang,et al.  Two-way nanopore sensing of sequence-specific oligonucleotides and small-molecule targets in complex matrices using integrated DNA supersandwich structures. , 2013, Angewandte Chemie.

[27]  C. Dekker,et al.  Power generation by pressure-driven transport of ions in nanofluidic channels. , 2007, Nano letters.

[28]  Mikael Bodén,et al.  Molecular basis for specificity of nuclear import and prediction of nuclear localization. , 2011, Biochimica et biophysica acta.

[29]  Roderick Y. H. Lim,et al.  The nuclear pore complex up close. , 2006, Current opinion in cell biology.

[30]  S. Gharbia,et al.  Single-nucleotide polymorphism-based differentiation and drug resistance detection in Mycobacterium tuberculosis from isolates or directly from sputum. , 2005, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[31]  B. Chait,et al.  The molecular architecture of the nuclear pore complex , 2007, Nature.

[32]  Wei Guo,et al.  Biomimetic smart nanopores and nanochannels. , 2011, Chemical Society reviews.

[33]  Emmanuel Delamarche,et al.  Microfluidics in the "open space" for performing localized chemistry on biological interfaces. , 2012, Angewandte Chemie.

[34]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[35]  Matsuhiko Nishizawa,et al.  Metal Nanotubule Membranes with Electrochemically Switchable Ion-Transport Selectivity , 1995, Science.

[36]  S. Thayumanavan,et al.  Molecular discrimination inside polymer nanotubules. , 2008, Nature nanotechnology.

[37]  A. deMello Control and detection of chemical reactions in microfluidic systems , 2006, Nature.

[38]  W. Schuhmann,et al.  Label-free electrochemical recognition of DNA hybridization by means of modulation of the feedback current in SECM. , 2004, Angewandte Chemie.

[39]  Kevin W Plaxco,et al.  Fluorescence detection of single-nucleotide polymorphisms with a single, self-complementary, triple-stem DNA probe. , 2009, Angewandte Chemie.

[40]  C. Montemagno,et al.  Translocation of double stranded DNA through membrane adapted phi29 motor protein nanopore , 2009, Nature nanotechnology.

[41]  Xu Hou,et al.  Gating of single synthetic nanopores by proton-driven DNA molecular motors. , 2008, Journal of the American Chemical Society.

[42]  Z. Siwy,et al.  Nanopores as protein sensors , 2012, Nature Biotechnology.

[43]  I. Macara Transport into and out of the Nucleus , 2001, Microbiology and Molecular Biology Reviews.

[44]  S. Dong,et al.  Direct electron transfer to cytochrome c oxidase in self-assembled monolayers on gold electrodes , 1996 .

[45]  Kang Wang,et al.  A nanochannel array-based electrochemical device for quantitative label-free DNA analysis. , 2010, ACS nano.

[46]  K. Weis Nucleocytoplasmic transport: cargo trafficking across the border. , 2002, Current opinion in cell biology.