O(d, d, Z) transformations as automorphisms of the operator algebra☆
暂无分享,去创建一个
[1] I. Giannakis,et al. T-duality in arbitrary string backgrounds , 1995, hep-th/9511061.
[2] Evans,et al. Operator algebras and an infinite-dimensional symmetry for string theory. , 1994, Physical review. D, Particles and fields.
[3] J. Schwarz,et al. Noncompact Symmetries in String Theory , 1992, hep-th/9207016.
[4] Evans,et al. Gauge-covariant deformations, symmetries, and free parameters of string theory. , 1991, Physical Review D, Particles and fields.
[5] J. Schwarz. Elementary Particles and the Universe , 1991 .
[6] Evans,et al. Deformations of conformal field theories and symmetries of the string. , 1990, Physical review. D, Particles and fields.
[7] A. Giveon,et al. On Discrete Symmetries and Fundamental Domains of Target Space , 1990 .
[8] B. Ovrut,et al. Spontaneously broken inter mass level symmetries in string theory , 1989 .
[9] Nathan Seiberg,et al. Large and small radius in string theory , 1989 .
[10] G. Veneziano,et al. Duality in String Background Space , 1989 .
[11] F. Wilczek,et al. Self-dual models with theta terms , 1989 .
[12] T. Buscher. Path-integral derivation of quantum duality in nonlinear sigma-models , 1988 .
[13] T. H. Buscher,et al. A symmetry of the string background field equations , 1987 .
[14] F. Wilczek,et al. Compactification of the Twisted Heterotic String , 1987 .
[15] N. Sakai,et al. Vacuum Energies of String Compactified on Torus , 1986 .
[16] T. Buscher. Quantum corrections and extended supersymmetry in new σ-models , 1985 .
[17] K. Kikkawa,et al. Casimir effects in superstring theories , 1984 .