O(d, d, Z) transformations as automorphisms of the operator algebra☆

[1]  I. Giannakis,et al.  T-duality in arbitrary string backgrounds , 1995, hep-th/9511061.

[2]  Evans,et al.  Operator algebras and an infinite-dimensional symmetry for string theory. , 1994, Physical review. D, Particles and fields.

[3]  J. Schwarz,et al.  Noncompact Symmetries in String Theory , 1992, hep-th/9207016.

[4]  Evans,et al.  Gauge-covariant deformations, symmetries, and free parameters of string theory. , 1991, Physical Review D, Particles and fields.

[5]  J. Schwarz Elementary Particles and the Universe , 1991 .

[6]  Evans,et al.  Deformations of conformal field theories and symmetries of the string. , 1990, Physical review. D, Particles and fields.

[7]  A. Giveon,et al.  On Discrete Symmetries and Fundamental Domains of Target Space , 1990 .

[8]  B. Ovrut,et al.  Spontaneously broken inter mass level symmetries in string theory , 1989 .

[9]  Nathan Seiberg,et al.  Large and small radius in string theory , 1989 .

[10]  G. Veneziano,et al.  Duality in String Background Space , 1989 .

[11]  F. Wilczek,et al.  Self-dual models with theta terms , 1989 .

[12]  T. Buscher Path-integral derivation of quantum duality in nonlinear sigma-models , 1988 .

[13]  T. H. Buscher,et al.  A symmetry of the string background field equations , 1987 .

[14]  F. Wilczek,et al.  Compactification of the Twisted Heterotic String , 1987 .

[15]  N. Sakai,et al.  Vacuum Energies of String Compactified on Torus , 1986 .

[16]  T. Buscher Quantum corrections and extended supersymmetry in new σ-models , 1985 .

[17]  K. Kikkawa,et al.  Casimir effects in superstring theories , 1984 .