One-dimensional modeling of pervaporation systems using a semi-empirical flux model

Abstract Sizing of large scale pervaporation units from experimental data requires mathematical models which can predict the pervaporation process performance adequately. In this work, a modeling approach is reported with a semi-empirical flux model regressed over experimental flux data measured at lab scale. The regression approach generates a temperature and concentration dependent flux function that can be solved simultaneously with material and energy balance over the length of a pervaporation module. For a binary mixture only four parameters are required for model fitting which can be obtained using lab-scale data: temperature and concentration of one component on feed side, permeate side pressure, and component flux. The semi-empirical flux model was verified using two separate experimental dataset for 1-butanol/water dehydration system using PERVAP 2510 membrane. The flux model was then used to solve a one-dimensional (1-D) pervaporation model to generate flux, concentration, temperature and PSI profiles over the length of the membrane modules. The 1-D model also calculates the size and arrangement of the pervaporation modules. Using the experimental data reported in literature, the proposed approach was used to size pervaporation modules for three dehydration systems: 1-butanol over PERVAP 2510, isobutanol over PERVAP 2510, and isobutanol over PERVAP 1510. Sensitivity analysis was also conducted.

[1]  J. Smith,et al.  Introduction to chemical engineering thermodynamics , 1949 .

[2]  Dan Hua,et al.  ZIF-90/P84 mixed matrix membranes for pervaporation dehydration of isopropanol , 2014 .

[3]  Peter Mizsey,et al.  New horizon for the membrane separation: Combination of organophilic and hydrophilic pervaporations , 2015 .

[4]  Leland M. Vane,et al.  High permeability membranes for the dehydration of low water content ethanol by pervaporation , 2007 .

[5]  H. K. Lonsdale,et al.  The growth of membrane technology , 1982 .

[6]  Xianshe Feng,et al.  Liquid Separation by Membrane Pervaporation: A Review , 1997 .

[7]  J. Prausnitz,et al.  LOCAL COMPOSITIONS IN THERMODYNAMIC EXCESS FUNCTIONS FOR LIQUID MIXTURES , 1968 .

[8]  David M Bagley,et al.  Recent advances in membrane technologies for biorefining and bioenergy production. , 2012, Biotechnology advances.

[9]  Peter Mizsey,et al.  Comparison of pervaporation models with simulation of hybrid separation processes , 2014 .

[10]  R. Krishna,et al.  The Maxwell-Stefan approach to mass transfer , 1997 .

[11]  Robert J. Lee,et al.  Separation of Liquid Mixtures by Permeation , 1961 .

[12]  Roger Bouzerar,et al.  A simplified solution–diffusion theory in pervaporation: the total solvent volume fraction model , 2004 .

[13]  Sundergopal Sridhar,et al.  Dehydration of ethanol through blend membranes of chitosan and sodium alginate by pervaporation , 2004 .

[14]  J. G. Wijmans,et al.  The solution-diffusion model: a review , 1995 .

[15]  James Wei,et al.  Diffusion mechanism of hydrocarbons in zeolites—I. Theory , 1992 .

[16]  Huajiang Huang,et al.  A review of separation technologies in current and future biorefineries , 2008 .

[17]  Eva Sorensen,et al.  Detailed mathematical modelling of membrane modules , 2001 .

[18]  M.H.V. Mulder,et al.  On the mechanism of separation of ethanol/water mixtures by pervaporation II. Experimental concentration profiles , 1985 .

[19]  A. Heintz,et al.  A generalized solution—diffusion model of the pervaporation process through composite membranes Part I. Prediction of mixture solubilities in the dense active layer using the UNIQUAC model , 1994 .

[20]  Andrew G. Livingston,et al.  Membranes for the dehydration of solvents by pervaporation , 2008 .

[21]  Cheng‐Chien Wang,et al.  Separation of ethanol-water solution by poly(acrylonitrile-co-acrylic acid) membranes , 2005 .

[22]  Richard W. Baker,et al.  Permeability, permeance and selectivity: A preferred way of reporting pervaporation performance data , 2010 .

[23]  Peter Mizsey,et al.  Methodology for parameter estimation of modelling of pervaporation in flowsheeting environment , 2007 .

[24]  Peter Mizsey,et al.  Modelling of pervaporation: Parameter estimation and model development , 2013 .

[25]  Jefferson W. Tester,et al.  Thermodynamics and its applications , 1974 .

[26]  Richard W. Baker,et al.  A simple predictive treatment of the permeation process in pervaporation , 1993 .

[27]  J. Gmehling Vapor-Liquid Equilibrium Data Collection , 1977 .

[28]  A. K. Frolkova,et al.  Bioethanol dehydration: State of the art , 2010 .

[29]  R. Baker Membrane Technology and Applications , 1999 .

[30]  Takeshi Matsuura,et al.  Pervaporation study on the dehydration of aqueous butanol solutions: a comparison of flux vs. permeance, separation factor vs. selectivity , 2004 .

[31]  W. Kaminski,et al.  Renewable energy source—Dehydrated ethanol , 2008 .

[32]  R. Huang,et al.  Pervaporation membrane separation processes , 1991 .

[33]  Peter Mizsey,et al.  Experimental data based modelling and simulation of isopropanol dehydration by pervaporation , 2008 .

[34]  Eva Sorensen,et al.  A general approach to modelling membrane modules , 2003 .

[35]  P. O. Backer,et al.  Enrichment calculations in gaseous diffusion: Large separation factor , 1955 .

[36]  Jing Zhao,et al.  Fabricating graphene oxide-based ultrathin hybrid membrane for pervaporation dehydration via layer-by-layer self-assembly driven by multiple interactions , 2015 .

[37]  Yu Zhang,et al.  Thin-film composite membranes with modified polyvinylidene fluoride substrate for ethanol dehydration via pervaporation , 2014 .

[38]  K. Rani,et al.  Solvent resistant chitosan/poly(ether-block-amide) composite membranes for pervaporation of n-methyl-2-pyrrolidone/water mixtures. , 2016, Carbohydrate polymers.

[39]  E. Henley,et al.  Separation process principles : chemical and biochemical operations , 2011 .

[40]  Freek Kapteijn,et al.  Temperature dependence of one‐component permeation through a silicalite‐1 membrane , 1997 .

[41]  Xianshe Feng,et al.  Estimation of activation energy for permeation in pervaporation processes , 1996 .

[42]  Tejraj M. Aminabhavi,et al.  Mixed matrix membranes of H‐ZSM5‐loaded poly(vinyl alcohol) used in pervaporation dehydration of alcohols: Influence of silica/alumina ratio , 2014 .

[43]  Robert Y. M. Huang,et al.  PERVAPORATION SEPARATION OF AQUEOUS MIXTURES USING CROSSLINKED POLYVINYL ALCOHOL MEMBRANES. III, PERMEATION OF ACETIC ACID-WATER MIXTURES , 1991 .

[44]  H. Strathmann,et al.  Introduction to Membrane Science and Technology , 2011 .

[45]  Tejraj M. Aminabhavi,et al.  Functionalized Graphene Sheets Embedded in Chitosan Nanocomposite Membranes for Ethanol and Isopropanol Dehydration via Pervaporation , 2014 .

[46]  Cristiano Piacsek Borges,et al.  Economic analysis of ethanol and fructose production by selective fermentation coupled to pervaporation: effect of membrane costs on process economics , 2002 .

[47]  Matthias Wessling,et al.  Membrane processes in biorefinery applications , 2013 .

[48]  Wojciech Kujawski,et al.  Application of Pervaporation and Vapor Permeation in Environmental Protection , 2000 .

[49]  W. P. Walawender,et al.  Analysis of Membrane Separation Parameters. II. Counter-current and Cocurrent Flow in a Single Permeation Stage , 1972 .

[50]  Robert Y. M. Huang,et al.  Polymeric membrane pervaporation , 2007 .

[51]  Bart Van der Bruggen,et al.  Simulation of a hybrid pervaporation-distillation process , 2008, Comput. Chem. Eng..