Surface-Consistent Sparse Multichannel Blind Deconvolution of Seismic Signals

We describe a method that allows for blind surface consistent estimation of the source and receiver wavelets of seismic signals. This is very relevant for surface-consistent deconvolution where current processing standards focus on the removal of the source and receiver effects under the minimum phase assumption. The proposed method, which is an extension of the Euclid deconvolution method, employs an iterative algorithm that simultaneously estimates the source and receiver wavelets that are consistent with the data. Unlike most deconvolution methods, the algorithm requires no prior phase assumptions. Another important feature of the algorithm is that we questioned the Gaussian density assumption of the reflectivity series and instead implemented a sparse regularizer to constrain the solution space of our desired reflectivity series. In other words, we assume that the reflectivity series can be cast as a sparse vector with few nonzero coefficients.

[1]  Mike Perz Acquisition/ProcessingInstantaneous phase and the detection of lateral wavelet stability , 2004 .

[2]  Robert E. Sheriff,et al.  Encyclopedic dictionary of applied geophysics , 2002 .

[3]  C. C. Craig,et al.  A First Course in Mathematical Statistics , 1947 .

[4]  M. Turhan Taner,et al.  Surface consistent corrections , 1981 .

[5]  Jeannot Trampert,et al.  Surface-consistent deconvolution using reciprocity and waveform inversion , 2006 .

[6]  K. Bube,et al.  Hybrid l 1 /l 2 minimization with applications to tomography , 1997 .

[7]  John C. VanDecar,et al.  Determination of teleseismic relative phase arrival times using multi-channel cross-correlation and least squares , 1990 .

[8]  Mauricio D. Sacchi,et al.  Sparse multichannel blind deconvolution , 2014 .

[9]  Paul L. Stoffa,et al.  Surface-consistent deconvolution in the log/Fourier domain , 1992 .

[10]  T. Kailath,et al.  A least-squares approach to blind channel identification , 1995, IEEE Trans. Signal Process..

[11]  Jon F. Claerbout,et al.  Predictive deconvolution in shot-receiver space , 1983 .

[12]  Stewart A. Levin,et al.  Surface‐consistent deconvolution , 1989 .

[13]  Mauricio D. Sacchi,et al.  Minimum entropy deconvolution with frequency-domain constraints , 1994 .

[14]  Peyman Milanfar,et al.  Robust Multichannel Blind Deconvolution via Fast Alternating Minimization , 2012, IEEE Transactions on Image Processing.

[15]  John P. Castagna,et al.  Seismic Resolution and Thin Bed Reflectivity Inversion , 2015 .

[16]  C. E. Weatherburn A First Course in Mathematical Statistics. , 1946 .

[17]  Yves Goussard,et al.  Multichannel seismic deconvolution , 1993, IEEE Trans. Geosci. Remote. Sens..

[18]  Umberto Spagnolini,et al.  Least-Square Multichannel Deconvolution , 2001 .

[19]  Eike Rietsch,et al.  Euclid and the art of wavelet estimation, Part II: Robust algorithm and field-data examples , 1997 .

[20]  Peter K. Gary,et al.  Four-Component Surface-Consistent Deconvolution , 1991 .