The minimum crystal size needed for a complete diffraction data set

A formula for absolute scattering power is derived to include spot fading arising from radiation damage and the crystal volume needed to collect diffraction data to a given resolution is calculated.

[1]  Ivar Waller,et al.  Zur Frage der Einwirkung der Wärmebewegung auf die Interferenz von Röntgenstrahlen , 1923 .

[2]  P. Debye,et al.  Interferenz von Röntgenstrahlen und Wärmebewegung , 1913 .

[3]  A. Brunger Version 1.2 of the Crystallography and NMR system , 2007, Nature Protocols.

[4]  Elspeth F Garman,et al.  Experimental determination of the radiation dose limit for cryocooled protein crystals. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[5]  E. Garman,et al.  Progress in research into radiation damage in cryo-cooled macromolecular crystals. , 2007, Journal of synchrotron radiation.

[6]  P. Debye,et al.  Zerstreuung von Röntgenstrahlen , 1915 .

[7]  J. Pflugrath,et al.  The finer things in X-ray diffraction data collection. , 1999, Acta crystallographica. Section D, Biological crystallography.

[8]  John C. Slater,et al.  The Theory of Complex Spectra , 1929 .

[9]  Naji S Husseini,et al.  Quantifying X-ray radiation damage in protein crystals at cryogenic temperatures. , 2006, Acta crystallographica. Section D, Biological crystallography.

[10]  M D Winn,et al.  An overview of the CCP4 project in protein crystallography: an example of a collaborative project. , 2003, Journal of synchrotron radiation.

[11]  J. Kirz,et al.  An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy. , 2005, Journal of Electron Spectroscopy and Related Phenomena.

[12]  James M. Holton,et al.  A beginner’s guide to radiation damage , 2009, Journal of synchrotron radiation.

[13]  M. Facciotti,et al.  Characterization of conditions required for X-Ray diffraction experiments with protein microcrystals. , 2000, Biophysical journal.

[14]  A. Wilson,et al.  Determination of Absolute from Relative X-Ray Intensity Data , 1942, Nature.

[15]  C. H. Bosanquet,et al.  I. The intensity of reflexion of X-rays by rock-salt.—Part II , 1921 .

[16]  Frédéric Livet,et al.  Diffraction with a coherent X-ray beam: dynamics and imaging , 2007, Acta Crystallographica Section A: Foundations of Crystallography.

[17]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[18]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[19]  D. Hartree XXIX. The atomic structure factor in the intensity of reflexion of X-rays by crystals , 1925 .

[20]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[21]  A G Leslie,et al.  Biological Crystallography Integration of Macromolecular Diffraction Data , 2022 .

[22]  G. Langlet,et al.  International Tables for Crystallography , 2002 .

[23]  F. Hercik,et al.  BIOLOGICAL EFFECTS OF IONIZING RADIATION ON MOLECULAR LEVEL , 1962 .

[24]  Manfred Burghammer,et al.  Structure of bovine rhodopsin in a trigonal crystal form. , 2003, Journal of molecular biology.

[25]  B. Schmitt,et al.  Performance of single-photon-counting PILATUS detector modules , 2009, Journal of synchrotron radiation.

[26]  M. Facciotti,et al.  Crystal structure of the bromide-bound D85S mutant of bacteriorhodopsin: principles of ion pumping. , 2003, Biophysical journal.

[27]  S Vynckier,et al.  Evaluation of a commercial VMC++ Monte Carlo based treatment planning system for electron beams using EGSnrc/BEAMnrc simulations and measurements. , 2009, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics.

[28]  J. Janin,et al.  Macromolecular crystallography with synchrotron radiation: photographic data collection and polarization correction , 1982 .

[29]  C. H. Bosanquet,et al.  XXIX. The intensity of reflexion of X-rays by rock-salt , 1921 .

[30]  A. Authier Dynamical theory of x-ray diffraction , 2001 .

[31]  S M Seltzer,et al.  Calculation of photon mass energy-transfer and mass energy-absorption coefficients. , 1993, Radiation research.

[32]  C. Nave,et al.  Radiation damage in protein crystals at low temperature. , 1994, Acta crystallographica. Section D, Biological crystallography.

[33]  Gustaf Arrhenius,et al.  The collected papers of Peter J. W. Debye , 1954 .

[34]  Richard Henderson,et al.  Cryo-protection of protein crystals against radiation damage in electron and X-ray diffraction , 1990, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[35]  J. Drenth Principles of protein x-ray crystallography , 1994 .

[36]  Elspeth F Garman,et al.  Radiation damage in protein crystals examined under various conditions by different methods. , 2009, Journal of synchrotron radiation.

[37]  T. Hahn International tables for crystallography , 2002 .

[38]  G. Borgstahl,et al.  Macromolecular crystal quality. , 2013, Methods in enzymology.

[39]  Colin Nave,et al.  The optimum conditions to collect X-ray data from very small samples. , 2008, Journal of synchrotron radiation.

[40]  Reginald W. James,et al.  The Optical principles of the diffraction of X-rays , 1948 .

[41]  Dale E Tronrud Introduction to macromolecular refinement. , 2004, Acta crystallographica. Section D, Biological crystallography.

[42]  J. C. Kendrew,et al.  The crystal structure of myoglobin: Phase determination to a resolution of 2 Å by the method of isomorphous replacement , 1961 .

[43]  J. ThomsonJ.,et al.  Conduction of electricity through gases , 1904 .

[44]  G. C.,et al.  Electricity and Magnetism , 1888, Nature.

[45]  B. Matthews Solvent content of protein crystals. , 1968, Journal of molecular biology.

[46]  Zbigniew Dauter,et al.  Biological Crystallography Structural Effects of Radiation Damage and Its Potential for Phasing , 2022 .

[47]  Putnam,et al.  The Collected Papers. , 1988 .

[48]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[49]  Bernhard Rupp,et al.  Matthews coefficient probabilities: Improved estimates for unit cell contents of proteins, DNA, and protein–nucleic acid complex crystals , 2003, Protein science : a publication of the Protein Society.

[50]  H. Moseley,et al.  XCIII. The high-frequency spectra of the elements , 1913 .

[51]  Timothy S Zwier,et al.  Role of water in electron-initiated processes and radical chemistry: issues and scientific advances. , 2005, Chemical reviews.

[52]  Keiko Ikeda,et al.  The molecular organization of cypovirus polyhedra , 2007, Nature.

[53]  K. Moffat,et al.  Radiation damage of protein crystals at cryogenic temperatures between 40 K and 150 K. , 2002, Journal of synchrotron radiation.

[54]  Gebhard F. X. Schertler,et al.  Protein crystallography with a micrometre-sized synchrotron-radiation beam , 2008, Acta crystallographica. Section D, Biological crystallography.

[55]  N. Xuong,et al.  Strategy for data collection from protein crystals using a multiwire counter area detector diffractometer , 1985 .

[56]  Andrew G. Glen,et al.  APPL , 2001 .

[57]  H. Ott Der Einflu der Temperatur auf die Rntgenstreuung fester Krper nach der Quantenmechanik , 1935 .

[58]  P. Auger Sur l'effet photoélectrique composé , 1925 .

[59]  U. W. Arndt,et al.  The Rotation method in crystallography : data collection from macromolecular crystals , 1977 .

[60]  C. Darwin XCII. The reflexion of X-rays from imperfect crystals , 1922 .

[61]  Randy J Read,et al.  Automated structure solution with the PHENIX suite. , 2008, Methods in molecular biology.

[62]  Paul D. Adams,et al.  A robust bulk-solvent correction and anisotropic scaling procedure , 2005, Acta crystallographica. Section D, Biological crystallography.

[63]  J. H. Hubbell,et al.  Review and history of photon cross section calculations , 2006, Physics in medicine and biology.

[64]  良二 上田 J. Appl. Cryst.の発刊に際して , 1970 .

[65]  S. Harrison,et al.  How does radiation damage in protein crystals depend on X-ray dose? , 2003, Structure.

[66]  Elspeth F Garman,et al.  Absorbed dose calculations for macromolecular crystals: improvements to RADDOSE. , 2009, Journal of synchrotron radiation.

[67]  Tom Alber,et al.  Suite of three protein crystallography beamlines with single superconducting bend magnet as the source. , 2004, Journal of synchrotron radiation.

[68]  Carter,et al.  Present and future capabilities of MCNP , 2000, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[69]  H. D. Flack,et al.  Absorption-weighted mean path lengths for spheres , 1978 .

[70]  L. Meitner Über die Entstehung der β-Strahl-Spektren radioaktiver Substanzen , 1922 .

[71]  O. Chibani,et al.  Monte Carlo dose calculations in homogeneous media and at interfaces: a comparison between GEPTS, EGSnrc, MCNP, and measurements. , 2002, Medical physics.

[72]  Mark A Hill,et al.  Will reduced radiation damage occur with very small crystals? , 2005, Journal of synchrotron radiation.

[73]  D. Rogers,et al.  EGS4 code system , 1985 .

[74]  K. Way,et al.  Nuclear Data Tables , 1959 .

[75]  G. N. Ramachandran,et al.  Determination of elastic constants of crystals from diffuse reflexions of X‐rays. I. Theory of method , 1951 .

[76]  G. Fournet,et al.  Small‐Angle Scattering of X‐Rays , 1956 .

[77]  R. G. Hart,et al.  Structure of Myoglobin: A Three-Dimensional Fourier Synthesis at 2 Å. Resolution , 1960, Nature.

[78]  Lellery Storm,et al.  Photon cross sections from 1 keV to 100 MeV for elements Z=1 to Z=100 , 1970 .

[79]  M. O'Keefe,et al.  Intensity of diffracted intensities , 2006 .

[80]  F. H. Attix Introduction to Radiological Physics and Radiation Dosimetry , 1991 .

[81]  Frank Herbert Attix,et al.  Introduction to Radiological Physics and Radiation Dosimetry: Attix/Introduction , 2007 .

[82]  Heather T. McFarlane,et al.  Atomic structures of amyloid cross-β spines reveal varied steric zippers , 2007, Nature.

[83]  Martyn D Winn,et al.  Macromolecular TLS refinement in REFMAC at moderate resolutions. , 2003, Methods in enzymology.

[84]  K. Moffat,et al.  Primary radiation damage of protein crystals by an intense synchrotron X-ray beam. , 2000, Journal of synchrotron radiation.

[85]  J. H. Hubbell,et al.  XCOM: Photon cross sections on a personal computer , 1987 .

[86]  N. Xuong,et al.  A multiwire proportional chamber as an area detector for protein crystallography , 1974 .

[87]  D Franck,et al.  Dosimetric comparison of Monte Carlo codes (EGS4, MCNP, MCNPX) considering external and internal exposures of the Zubal phantom to electron and photon sources. , 2005, Radiation protection dosimetry.

[88]  C. Darwin XXXIV. The theory of X-ray reflexion , 1914 .

[89]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[90]  James Clerk Maxwell,et al.  VIII. A dynamical theory of the electromagnetic field , 1865, Philosophical Transactions of the Royal Society of London.

[91]  E. N. Maslen X-ray absorption , 2006 .

[92]  C. W. Dwiggins,et al.  Rapid calculation of X-ray absorption correction factors for cylinders to an accuracy of 0.1% , 1975 .

[93]  Manfred Burghammer,et al.  Crystal structure of a thermally stable rhodopsin mutant. , 2007, Journal of molecular biology.

[94]  A. Leslie,et al.  The integration of macromolecular diffraction data. , 2006, Acta crystallographica. Section D, Biological crystallography.

[95]  R. Kronig,et al.  New type of auger effect and its influence on the x-ray spectrum , 1935 .

[96]  U Weierstall,et al.  Dose, exposure time and resolution in serial X-ray crystallography. , 2007, Journal of synchrotron radiation.

[97]  C. Darwin,et al.  XIV. The reflexion of the X-rays , 1913 .

[98]  P E Bourne,et al.  The Protein Data Bank. , 2002, Nucleic acids research.

[99]  U. Arndt Optimum X‐ray wavelength for protein crystallography , 1984 .

[100]  J. Maxwell VIII. A dynamical theory of the electromagnetic field , 1865, Philosophical Transactions of the Royal Society of London.

[101]  D E Tronrud,et al.  TNT refinement package. , 1997, Methods in enzymology.

[102]  Parameters affecting the X-ray dose absorbed by macromolecular crystals. , 2005, Journal of synchrotron radiation.

[103]  E Marseglia,et al.  An Introduction to X-Ray Crystallography , 1979 .

[104]  F. S.,et al.  Conduction of Electricity through Gases , 1903, Nature.

[105]  Robin L. Owen,et al.  Determination of X-ray flux using silicon pin diodes , 2009, Journal of synchrotron radiation.

[106]  R. Ravelli,et al.  Is radiation damage dependent on the dose rate used during macromolecular crystallography data collection? , 2006, Acta crystallographica. Section D, Biological crystallography.

[107]  K. Wilson,et al.  Efficient anisotropic refinement of macromolecular structures using FFT. , 1999, Acta crystallographica. Section D, Biological crystallography.

[108]  A. Wilson,et al.  The probability distribution of X-ray intensities , 1949 .

[109]  Z Dauter,et al.  Data-collection strategies. , 1999, Acta crystallographica. Section D, Biological crystallography.

[110]  I. Waller Theoretische Studien zur Interferenz- und Dispersionstheorie der Röntgenstrahlen , 2022 .

[111]  L. Azároff Polarization correction for crystal‐monochromatized X‐radiation , 1955 .

[112]  Robert A. Grothe,et al.  Structure of the cross-β spine of amyloid-like fibrils , 2005, Nature.

[113]  James W. Murray,et al.  X-ray absorption by macromolecular crystals: the effects of wavelength and crystal composition on absorbed dose , 2004 .

[114]  Michael M Woolfson,et al.  An Introduction to X-ray Crystallography by Michael M. Woolfson , 1997 .

[115]  A. Kox,et al.  THE COLLECTED PAPERS OF , 1996 .

[116]  A. Cole Absorption of 20-eV to 50,000-eV electron beams in air and plastic. , 1969, Radiation research.