Application of State Space Search Method to find a Low Voltage Solution for Ill-Conditioned System

This paper uses the State Space Search Method (SSSM) in polar coordinate form to obtain low voltage solution and maximum loading point of ill-condition power system. SSSM improves the direction of state variables (buses voltage and phase) of system buses based on optimal multiplier to converge load flow equations in ill-conditioned system. The advantage of SSSM is apparent in constant preservation of dimension of Jacobian matrix in load flow equations. Whereas another approaches such as Homotopy and continuation power flow vary the framework of Jacobian matrix based on predictor and corrector elements during enhancing load demand. The calculation procedure of SSSM is depending on classical Newton-Raphson load flow method. The reliability of SSSM is indicated by IEEE test systems, 14 and 30 buses in well and ill-conditioned at maximum loading point as systems. Streszczenie. W artykule opisano sposob wykorzystania metody przeszukiwania przestrzeni stanow we wspolrzednych biegunowych, w celu uzyskania rozwiązan niskonapieciowych oraz punktu maksymalnego obciązenia w systemach energetycznych oraz źle uwarunkowanych rownaniach stanu. Metoda zwieksza poprawnośc doboru zmiennych stanu systemu poprzez wyznaczenie optymalnego wspolczynnika skupienia rownan przeplywu mocy do obciązenia w systemie. Obliczenia oparto na metodzie Newton'a-Raphson'a określania przeplywu mocy. (Implementacja metody przeszukiwania przestrzeni stanow w poszukiwaniu rozwiązan niskonapieciowych w sieciach o źle uwarunkowanych rownaniach stanu)

[1]  F. Wu,et al.  Theoretical study of the convergence of the fast decoupled load flow , 1977, IEEE Transactions on Power Apparatus and Systems.

[2]  J.E. Tate,et al.  A comparison of the optimal multiplier in polar and rectangular coordinates , 2005, IEEE Transactions on Power Systems.

[3]  Ying Chen,et al.  A Jacobian-free Newton-GMRES(m) method with adaptive preconditioner and its application for power flow calculations , 2006, IEEE Transactions on Power Systems.

[4]  K. Iba,et al.  A method for finding a pair of multiple load flow solutions in bulk power systems , 1989, Conference Papers Power Industry Computer Application Conference.

[5]  Hazlie Mokhlis,et al.  Comparative studies on Non-Divergent Load flow methods in well, ill and unsolvable condition , 2010, 2010 International Conference on Power System Technology.

[6]  Wei-Tzer Huang,et al.  New network sensitivity-based approach for real-time complex power flow calculation , 2012 .

[7]  F. Milano Continuous Newton's Method for Power Flow Analysis , 2009, IEEE Transactions on Power Systems.

[8]  Daniel Tylavsky,et al.  A nondiverging polar-form Newton-based power flow , 1988 .

[9]  L.C.P. da Silva,et al.  Investigation of the relationship between ill-conditioned power flow and voltage collapse , 2000 .

[10]  C. Castro,et al.  A critical evaluation of step size optimization based load flow methods , 2000 .

[11]  Thomas J. Overbye,et al.  Effective calculation of power system low-voltage solutions , 1996 .

[12]  N.G. Bretas,et al.  Power system low-voltage solutions using an auxiliary gradient system for voltage collapse purposes , 2005, IEEE Transactions on Power Systems.

[13]  B. Stott,et al.  Review of load-flow calculation methods , 1974 .

[14]  Y. Tamura,et al.  Relationship Between Voltage Instability and Multiple Load FLow Solutions in Electric Power Systems , 1983, IEEE Transactions on Power Apparatus and Systems.

[15]  Yasuo Tamura,et al.  A Load Flow Calculation Method for Ill-Conditioned Power Systems , 1981, IEEE Transactions on Power Apparatus and Systems.

[16]  F. Torelli,et al.  Widely convergent method for finding solutions of simultaneous nonlinear equations , 2012 .

[17]  H. Sasaki,et al.  A predictor/corrector scheme for obtaining Q-limit points for power flow studies , 2005, IEEE Transactions on Power Systems.

[18]  Hsiao-Dong Chiang,et al.  Continuation Power Flow With Nonlinear Power Injection Variations: A Piecewise Linear Approximation , 2008, IEEE Transactions on Power Systems.

[19]  A.C.Z. de Souza,et al.  New techniques to speed up voltage collapse computations using tangent vectors , 1997 .