Theory and Methods for Global Optimization — An Integral Approach
暂无分享,去创建一个
Let X be a Hausdorff topological space, S ⊂ X a closed set and f = X → R a real-valued function. The problem considered here is to find the infimum of f over S,
$$\matrix{ {{\rm{\bar c}} = \inf {\rm{f}}\left( {\rm{x}} \right)} \cr {{\rm{x}} \in {\rm{s}}} \cr } $$
(1.1)
and the set of all global minima:
$${\rm{\bar H = }}\left\{ {{\rm{x}}\left| {{\rm{f}}\left( {\rm{x}} \right) = {\rm{\bar c,x}} \in {\rm{s}}} \right.} \right\}$$
(1.2)
We assume in this paper: (A1) f is continuous: (A2) There is α ∈ R’ such that the level set
$$\matrix{ {{{\rm{H}}_{\rm{\alpha }}} = \left\{ {{\rm{x}}\left| {{\rm{f}}\left( {\rm{x}} \right) \le {\rm{\alpha }}} \right.} \right\}} \cr {{\rm{is}}\,{\rm{compact}}\,{\rm{and}}\,{{\rm{H}}_{\rm{\alpha }}} \cap {\rm{s}} \ne \phi {\rm{.}}} \cr } $$
(1.3)
Thus the problem (1.1) becomes to find
$$\matrix{ {{\rm{\bar c = min}}\,{\rm{f}}\left( {\rm{x}} \right) = \min {\rm{f}}\left( {\rm{x}} \right)} \cr {{\rm{x}} \in {\rm{s}}\,{\rm{x}} \in {{\rm{H}}_{\rm{\alpha }}} \cap {\rm{S}}} \cr } $$
(1.4)
and the set of all global minima Ħ is non empty.
[1] Quan Zheng,et al. Nonlinear observation via global optimization methods??The measure theory approach , 1984 .
[2] Zheng Quan. Optimality conditions for global optimization (II) , 1985 .
[3] J. F. Tang,et al. Automatic design of optical thin-film systems—merit function and numerical optimization method , 1982 .
[4] F T Yu,et al. Automatic generation of prototype lenses. , 1982, Optics letters.