Dual-Pivot Quicksort: Optimality, Analysis and Zeros of Associated Lattice Paths
暂无分享,去创建一个
[1] Pascal Hennequin. Analyse en moyenne d'algorithmes, tri rapide et arbres de recherche , 1991 .
[2] Markus E. Nebel,et al. Analysis of Pivot Sampling in Dual-Pivot Quicksort: A Holistic Analysis of Yaroslavskiy’s Partitioning Scheme , 2014, Algorithmica.
[3] David Thomas,et al. The Art in Computer Programming , 2001 .
[4] S. G. Mohanty,et al. Lattice Path Counting and Applications. , 1980 .
[5] Martin Dietzfelbinger,et al. How Good Is Multi-Pivot Quicksort? , 2015, ACM Trans. Algorithms.
[6] Sebastian Wild,et al. Dual-Pivot Quicksort and Beyond: Analysis of Multiway Partitioning and Its Practical Potential , 2016 .
[7] P. Brändén. Unimodality, log-concavity, real-rootedness and beyond , 2015 .
[8] Philippe Flajolet,et al. Analytic Combinatorics , 2009 .
[9] Sebastian Wild,et al. Java 7's Dual-Pivot Quicksort , 2014 .
[10] Helmut Prodinger,et al. Counting Zeros in Random Walks on the Integers and Analysis of Optimal Dual-Pivot Quicksort , 2016, ArXiv.
[11] Donald E. Knuth,et al. The art of computer programming: sorting and searching (volume 3) , 1973 .
[12] C. Krattenthaler. Lattice Path Enumeration , 2015, 1503.05930.
[13] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[14] P. Flajolet,et al. Analytic Combinatorics: RANDOM STRUCTURES , 2009 .
[15] Ronald L. Graham,et al. Concrete mathematics - a foundation for computer science , 1991 .
[16] Sebastian Wild,et al. Average Case and Distributional Analysis of Dual-Pivot Quicksort , 2013, ACM Trans. Algorithms.
[17] Carsten Schneider,et al. Séminaire Lotharingien de Combinatoire 56 (2007), Article B56b SYMBOLIC SUMMATION ASSISTS COMBINATORICS , 2022 .
[18] Martin Dietzfelbinger,et al. Optimal Partitioning for Dual-Pivot Quicksort , 2013, ACM Trans. Algorithms.