Extremely large and significantly anisotropic magnetoresistance in ZrSiS single crystals

Recently, the extremely large magnetoresistance (MR) observed in transition metal telluride, like WTe2, attracted much attention because of the potential applications in magnetic sensor. Here, we report the observation of extremely large magnetoresistance as 3.0 × 104% measured at 2 K and 9 T magnetic field aligned along [001]-ZrSiS. The significant magnetoresistance change (∼1.4 × 104%) can be obtained when the magnetic field is titled from [001] to [011]-ZrSiS. These abnormal magnetoresistance behaviors in ZrSiS can be understood by electron-hole compensation and the open orbital of Fermi surface. Because of these superior MR properties, ZrSiS may be used in the magnetic sensors.

[1]  Zu-Yan Xu,et al.  Observation of Fermi arc and its connection with bulk states in the candidate type-II Weyl semimetal WTe2 , 2016 .

[2]  B. Lotsch,et al.  Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS , 2015, Nature Communications.

[3]  Guanghou Wang,et al.  Unoccupied electronic structure and signatures of topological Fermi arcs in the Weyl semimetal candidate Mo$_x$W$_{1-x}$Te$_2$ , 2015, 1512.09099.

[4]  Q. Gibson,et al.  Resistivity plateau and extreme magnetoresistance in LaSb , 2015, Nature Physics.

[5]  M. Troyer,et al.  MoTe2: Weyl and Line Node Topological Metal , 2015 .

[6]  X. Dai,et al.  Two-dimensional oxide topological insulator with iron-pnictide superconductor LiFeAs structure , 2015, 1509.01686.

[7]  C. Felser,et al.  Prediction of Weyl semimetal in orthorhombicMoTe2 , 2015, Physical Review B.

[8]  Xi Dai,et al.  Type-II Weyl semimetals , 2015, Nature.

[9]  Suyeon Cho,et al.  Bandgap opening in few-layered monoclinic MoTe2 , 2015, Nature Physics.

[10]  Hsin Lin,et al.  Topological semimetals and topological insulators in rare earth monopnictides , 2015, 1504.03492.

[11]  Q. Gibson,et al.  Large, non-saturating magnetoresistance in WTe2 , 2014, Nature.

[12]  J. S. Lee,et al.  Pseudogap formation in 4d transition metal oxide BaRuO3 , 2001 .

[13]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[14]  Chunsheng Wang,et al.  Main Group Element Size and Substitution Effects on the Structural Dimensionality of Zirconium Tellurides of the ZrSiS Type , 1995 .

[15]  R. S. Beech,et al.  Magnetic field sensors using GMR multilayer , 1994 .

[16]  Hafner,et al.  Ab initio molecular dynamics for open-shell transition metals. , 1993, Physical review. B, Condensed matter.

[17]  J. Lenz A review of magnetic sensors , 1990, Proc. IEEE.

[18]  A. Pippard Magnetoresistance in metals , 1989 .

[19]  Alexei Abrikosov,et al.  Fundamentals of the theory of metals , 1988 .